
VERAGREG: A Framework for Verifiable
Privacy-Preserving Data Aggregation

Jakub Klemsa, Lukáš Kencl and Tomáš Vaněk
Faculty of Electrical Engineering,

Czech Technical University in Prague
Prague, Czech Republic

{jakub.klemsa, lukas.kencl, tomas.vanek}@fel.cvut.cz

Abstract—A lot of effort has been made to devise a scheme
for verifiable and privacy-preserving outsourcing of arbitrary
computations. However, such schemes rely on Fully Homo-
morphic Encryption which is still far from practical. In our
work, we instead focus solely on encryption schemes with single
homomorphic operation, in particular addition. We define a
rigorous framework that gives the data originator a possibility
to check what values have been incorporated within provided
homomorphic aggregate. We also propose a practical scheme
that instantiates this framework and prove that it achieves
Indistinguishability under Non-Adaptive Chosen Ciphertext Attack
(IND-CCA1). The definition of our framework led us further
to a straightforward modification of the security notions of Non-
Malleability (NM) and Adaptive Chosen Ciphertext Attack (CCA2).
Our modification aims at preventing trivial breach which is by
principle unavoidable for plain homomorphic encryption. With
our enhancement, the notions of security can serve as a novel
security goal for any future verifiable homomorphic schemes.

Index Terms—verifiable data aggregation, homomorphic en-
cryption, formal security.

I. INTRODUCTION

In the current age of massive data collection and powerful
processing tools, privacy is becoming a serious concern. There
are emerging first regulations that intend to limit the scope of
data that can be collected about specific person, e.g., General
Data Protection Regulation (GDPR, [1]) in the EU. Not only
the definition of personal data is very broad, advanced profiling
techniques might be further used for extraction of possibly
sensitive personal information from seemingly innocent data.
Hence it is highly important to limit the scope of the data
provided to a service as much as possible—only data strictly
necessary for its smooth functionality should be provided.

However, in order to evaluate the data requested by the
service, entry-level raw data might need to be processed at
a user’s device without unveiling to the service. This might
be challenging or even impossible for some IoT devices.
The only other option would be outsourcing of data storage
and/or processing. To outsource arbitrary computation while
keeping the data hidden from the service, Fully Homomorphic
Encryption (FHE) would be needed. However, current FHE
schemes are too demanding for the processing party, hence we
focus solely on partially homomorphic schemes, in particular

This work was supported by Electrolux through its Student Support
Programme.

Additively Homomorphic Encryption (AHE). We present a
real-world scenario where the service is allowed to learn
sums of specific sets of values but not the individual values.
We consider a device that measures possibly sensitive user
data and has limited resources, hence needs to outsource
data storage and processing—such processing where addition
operation is sufficient for its functionality.

A smart electricity meter may serve as an example of a
real application since it measures sensitive user data—detailed
electricity consumption is not something one would like to
publish. Ideally, one would not like to share it with the elec-
tricity provider either, however, for accounting purposes, the
provider needs to know at least certain sums of these values,
according to the actual tariff. Hence, the device encrypts the
consumption by means of AHE and sends it to the provider for
storage. Once needed, the provider sums required ciphertexts
and sends the aggregate back to the device for decryption.

At this point, it would be desirable to provide the de-
vice with means of verification that the aggregate indeed
consists of an adequate set of values, possibly claimed on
a separate list. For this purpose, the device incorporates a
unique identification (ID) into each ciphertext and sends the
unencrypted ID alongside the ciphertext to the provider. The
provider then accompanies each aggregate ciphertext with a
list of incorporated ID’s before sending back to the device.
The framework we define must obviously guarantee that the
provider is neither able to modify, nor remove the ID’s from
any ciphertext so that the device is able to detect any forgery.

Once the device is provided with the ability to check what
values are included inside an aggregate ciphertext, it can be
also given the possibility of refusing some of them. E.g., any
single value could be considered as a sum as well, however,
it might not be desired to unveil it. For this purpose, each
application will define an aggregating policy which will state
what sets of values are the only allowed for making sums of.

We call the proposed framework the VERAGREG Frame-
work which refers to VERifiable AGGREGates; see Figure 1
for an illustration.

Paper Outline

First, we mention previous and related work in Section II.
In Section III, we define the VERAGREG Framework about
which we state basic impossibility results in Section IV. Based

d1, d2, Smart Meter E(di), i

P
i2B

di = ?
B = f2; 3; 7; 9g

L
i2B

E(di)

B

: : :

P
i2B

di

decrypt
L

B consistent
with plaintext?

into
P

i2B
di

E(d1), 1
E(d2), 2

: : :
· · ·

Data Collection Phase

encrypt data

Provider

Aggregate

Creation

& Verification

Phase

Fig. 1. Example of VERAGREG utilization in the IoT. Left: classical meter,
center: smart meter (aka. device), right: electricity provider.

on these results, we define novel notions of security and
show an equivalence analogous to that of NM-CCA2 ⇐⇒
IND-CCA2. Next we propose an instantiation of the VERA-
GREG Framework in Section V which we further discuss in
Section VI. In Section VII we outline an approach how to
prevent the service from learning too much about individual
values by solving a system of linear equations. Finally we
propose possible future directions in Section VIII.

II. RELATED WORK

Let us remind the properties of plain Fully- and Additively
Homomorphic Encryption (FHE and AHE, respectively).
AHE is a public key cryptosystem that enables for addition
over encrypted data using the public key. I.e., it is possible
to combine encrypted values AHE(d1) and AHE(d2) into
a ciphertext that decrypts into d1 + d2. We will denote the
ciphertext addition operation by “⊕” while it holds

AHE−1
(
AHE(d1)⊕AHE(d2)

)
= d1 + d2. (1)

In addition to AHE, FHE allows for multiplication over
encrypted data. Note that it is possible to express any com-
putation in terms of addition and multiplication, hence FHE
allows for arbitrary computation over encrypted data.

However, any plain homomorphic encryption is inherently
malleable—it does not offer yet any means of verification that
the computation has been performed honestly. This problem
has been studied for FHE—Gennaro et al. [2] introduced a
non-interactive protocol for verifiable privacy-preserving com-
putation. Later, improvements (Tang et al. [3]), modifications
(Boneh et al. [4]) or other approaches (Liu et al. [5]) have
emerged.

Regarding FHE, it had been a long standing open problem
whether it exists until the work of Gentry [6]. Since then,
several improvements have been proposed, however, neither
of them achieves practically usable performance. In contrast,
we consider only addition which enables us to use AHE while
there exist several practical schemes (e.g., Paillier cryptosys-
tem [7]). Moreover, for a verification that addition has been
performed honestly, only a list of ID’s of involved values and
their multiplicity is sufficient which will allow for a simpler
construction.

III. THE VERAGREG FRAMEWORK

We will be using the following notations and symbols:
• for a finite set A, let A∗ =

⋃∞
n=0A

n,
• for a group G; g1, g2, . . . , gn ∈ G, let 〈g1, g2, . . . , gn〉

denote a subgroup generated by g1, g2, . . . , gn,
• for a function f : N→ R+, we say that f is

– negligible if ∀c > 0 ∃kc ∀k > kc f(k) < k−c,
– overwhelming if 1− f is negligible, f ∈ OW,

• let ÷ denote integer division.
In the framework we define (cf. Figure 1), we consider the

data to be elements of an additive Abelian group (D,+). We
begin with a couple of definitions of policy-related terms.

Definition 1 (List of ID’s). Let B denote the set of ID’s. Any
B ∈ Z|B| will be referred to as the List of ID’s.

A list item corresponding to b ∈ B will be denoted by
B[b]. The weighted sum of respective data

∑
B[bi] · di, where

integer multiplication is interpreted as multiple group addition
or subtraction, respectively, will be called the Sum of the List.

Definition 2 (Policy). Let B denote the set of ID’s. By Policy
we mean any P ⊆ Z|B|, i.e., any set of lists. We say a list B
is compliant with policy P if B ∈ P .

Note 1. We can view Z|B| as an additive group with standard
coordinate-wise addition. Hence any policy can serve as a
set of generators of its subgroup. It follows that by using
addition and subtraction of received results, the service can
compute the same set of values for any policies P1,2 such that
〈P1〉 = 〈P2〉, i.e., such policies can be considered equivalent.
However, we will discuss possible differences in Section VII.

The VERAGREG Framework employs five Probabilistic
Polynomial Time (PPT) algorithms, here we briefly describe
each of them:

Device: Initialization Algorithm – Init

Provided with a security parameter λ, this algorithm ge-
nerates a public and private keying material for underlying
encryption schemes. N.b., Init outputs order λ-bit key, i.e., in
order to fulfill the PPT property, λ must be given in unary.

Device: ID Granting Algorithm – Grant

This algorithm inputs the security parameter λ, a sequence
of ID’s and a piece of data. It outputs a sequence of ID’s—
which will be used as the input sequence for the next stage—
and the actual and unique ID. The sequence of ID’s may
include, e.g., a part of already granted ID’s or a counter. The
granting algorithm might also implement part of the policy.
We further allow it to output an invalid symbol ⊥ if, e.g., the
counter exceeds certain bounds or the data is invalid in any
sense.

Device: Encryption Algorithm – E

This algorithm encrypts the input data while incorporating
the provided ID within the output ciphertext so that it can be
neither modified, nor removed.

Service: Addition Algorithm – Add

The Addition Algorithm inputs a list of ID’s together with
a series of respective ciphertexts over which it performs cor-
responding homomorphic additions or subtractions. It outputs
the final aggregate ciphertext.

Device: Decryption Algorithm – D

Last but not least, the Decryption Algorithm inputs a list
of ID’s which is expected to describe the contents of the
second input—the aggregate ciphertext to be decrypted. First,
it checks that the list is policy-compliant and terminates with
⊥ if this is not the case. Then it verifies that the ciphertext
was indeed created according to the provided list. It returns
the decrypted data if the check passes, ⊥ otherwise.

Definition 3 (VERAGREG Framework). Let D denote an
additive Abelian group—the data space, λ ∈ N the security pa-
rameter, B the set of ID’s, C the ciphertext space, KP , KS the
public and secret key space, respectively. VERAGREG Frame-
work is a 5-tuple of PPT algorithms (Init,Grant,E,Add,D),
• Init : {1}∗ → KP ×KS ,
• Grant : {1}∗ ×B∗ ×D → B∗ ×B ∪ {⊥},
• E : KS ×B ×D → C,
• Add : KP × Z|B| × C∗ → C,
• D : KS × Z|B| × C → D ∪ {⊥},

for which it holds: ∀n ∈ N, ∀(di)ni=1 ∈ Dn with correspond-
ing valid (bi)

n
i=1 granted by Grantλ, ∀B ∈ Z|B|, B[bi] = ni,

B[b] = 0 for b 6∈ {bi}ni=1, and a key pair (pk, sk)← Initλ,
1) if B is policy-compliant,

Pr

[
Dsk

(
B,Addpk

(
B,Esk(bi, di)

n
i=1

))
=

n∑
i=1

ni · di
]

∈ OWλ, (2)

i.e., the encryption is additively homomorphic,
2) if B is not policy-compliant,

Pr

[
Dsk

(
B,Addpk

(
B,Esk(bi, di)

n
i=1

))
= ⊥

]
∈ OWλ,

(3)
i.e., policy-incompliant list is discarded,

3) ∀B′ ∈ Z|B|, B′ 6= B,

Pr

[
Dsk

(
B′,Addpk

(
B,Esk(bi, di)

n
i=1

))
= ⊥

]
∈ OWλ,

(4)
i.e., the framework detects any list forgery,

4) otherwise,

Pr
[
Dsk(·, ·) = ⊥

]
∈ OWλ, (5)

i.e., any invalid ciphertext is detected.

IV. FORMAL NOTIONS OF SECURITY

Let us briefly describe some common formal notions of
security—these form pairs of a game and respective attacker
capabilities; for a proper formalization we refer to Bellare et
al. [8]. The game defines a scenario in which two parties occur:
a Challenger and an Adversary.

In the Indistinguishability Game (IND), the goal of the
Adversary is to distinguish which of two plaintexts of her
choice has been encrypted by the Challenger. The goal of the
Adversary in the Non-Malleability Game (NM) is to create a
valid ciphertext that is related by its plaintext to the challenge
one but is not related to any other plaintext.

In each game, the Adversary has different capabilities. In
the Chosen Plaintext Attack (CPA), the Adversary can encrypt
plaintexts of her choice (i.e., has access to an encryption
oracle 1 or is provided with the public key). The Non-Adaptive
Chosen Ciphertext Attack (CCA1) allows the Adversary to
query a decryption oracle before the challenge ciphertext
is provided. In the strongest variant—the Adaptive Chosen
Ciphertext Attack (CCA2)—the Adversary is provided with
access to a decryption oracle in both phases with only limita-
tion: the oracle refuses to decrypt the challenge ciphertext.

In addition to these “classical” notions, there have emerged
some extensions suitable for different scenarios, including
homomorphic encryption, e.g., Prabhakaran et al. [9].

Let us state two easy observations due to which we rede-
fine the notions of security with respect to the VERAGREG
framework in order to avoid trivial breach and provide certain
formal security goal.

Proposition 4. The VERAGREG framework does not resist
any “classical” NM attack scenario.

Proof. The Adversary can trivially win the “classical” NM
game: she includes the challenge ciphertext into a policy-
compliant aggregate together with several custom ciphertexts
and accompanies it with corresponding relation, cf. [8, Defi-
nition 2.2].

Proposition 5. The VERAGREG framework does not resist
any “classical” CCA2 attack scenario.

Proof. There is only one limitation of the decryption oracle in
the CCA2 attack scenario—it refuses to decrypt the challenge
ciphertext in the second phase. Hence it is sufficient to
show how this ciphertext can be decrypted, i.e., construct an
unlimited decryption oracle. For this purpose, the Adversary
creates a policy-compliant aggregate ciphertext consisting of
known values (previously encrypted by the encryption oracle)
including the challenge ciphertext. Such a ciphertext is not
cheated, is policy-compliant and differs from the challenge
one, hence the oracle decrypts it. The Adversary then easily
calculates the corresponding plaintext.

The previous proofs use the same reasoning for which no
plain homomorphic encryption can achieve any kind of NM or
CCA2 security, respectively. However, unlike plain homomor-
phic encryption, the VERAGREG framework includes an addi-
tional verification feature that enables the Challenger to inspect
the contents of any ciphertext and possibly detect whether the
challenge ciphertext has been included. Taking this possibility

1In the VERAGREG framework, encryption uses the private key, hence an
encryption oracle is necessary.

into account, we will introduce modified versions of NM and
CCA2 which will avoid such a trivial breach.

Note that the CPA scenario does not use decryption oracle
at all, in the CCA1 scenario, the decryption oracle is unlimited
and only available in the first phase, and regarding the IND
game, no related encryptions are created—the only goal is
to distinguish. Hence the two of modifications are sufficient.
Note that the following definitions are only applicable in the
VERAGREG framework.

Definition 6 (L-NM Game). In addition to the definition
of Non-Malleability by Bellare et al. [8, Definition 2.2],
List Non-Malleability (L-NM) further requires that the output
ciphertexts do not include the challenge ciphertext’s ID within
their lists.

Definition 7 (L-CCA2 Attack Scenario). In addition to the
definition of Adaptive Chosen Ciphertext Attack by Bellare et
al. [8], List Adaptive Chosen Ciphertext Attack (L-CCA2)
restricts the decryption oracle during the second phase: it
refuses to decrypt any ciphertext including the challenge
ciphertext’s ID within its list.

In the following theorem, we state an equivalence analogous
to NM-CCA2 ⇐⇒ IND-CCA2 due to Bellare et al. [8].

Theorem 8 (LNM-LCCA2 ⇐⇒ IND-LCCA2). An instance
of the VERAGREG framework is LNM-LCCA2-secure if and
only if it is IND-LCCA2-secure.

Proof. For both implications, the original proofs by Bellare
et al. [8, Theorems 3.1, 3.3] work while the first implication
requires a slight modification of the Adversary and the second
one just a short comment.
⇒ [8, Theorem 3.1]: In Algorithm AO2

2 , the bitwise com-
plement to be encrypted needs to be replaced with some VE-
RAGREG plaintext-group operation, e.g., by changing E(xc)
to E(xc + a) for some fixed a ∈ D and respective change
of the relation R. The challenge ciphertext’s ID is obviously
excluded since a fresh encryption is created.
⇐ [8, Theorem 3.3]: In Algorithm ADsk

2 , the set of ci-
phertexts y (the output of BDsk

2) does not include indeed any
ciphertext with the challenge ciphertext’s ID inside its list—
the assumed success of the L-NM game requires it. Hence the
following decryption passes which is the only concern in the
L-CCA2 scenario.

What assumptions need to hold about the five VERAGREG
algorithms in order to achieve IND-LCCA2 security—this
remains an open question and is subject to ongoing research.

V. A VERAGREG SCHEME

So far we have described the general properties of the
VERAGREG framework, let us now propose a concrete VE-
RAGREG scheme (i.e., a description of the five VERAGREG
algorithms) which will aim at satisfying the desired properties.
In our proposal, we will consider standard modular addition
as the additive group D, only addition operation (i.e., non-
negative lists of ID’s) and binary encoding. For practical

reasons, we will also aim at preventing modular overflows by
allowing the Addition Algorithm to output⊥, shall an overflow
occur.

Initialization Algorithm – Init

The Initialization Algorithm computes system parameters
based on additional desired properties:

• the length of input piece of data shall be at least δ bits,
• 2ν of data values shall not overflow after addition.

It follows that the data part must be at least ν + δ bits long.
The algorithm sets up

µ1 = max{λ, ν + δ}, (6)
µ2 = λ. (7)

Then it initializes an AHE scheme with the security parameter
λ while the plaintext additive group must be isomorphic to
some modular addition and must be able to handle at least
bitlength of

βAHE = ν + λ+ µ1 + µ2 (8)

in order to prevent overflows. The AHE cryptosystem must
comply at least IND-CPA, unlike, e.g., plain RSA. Next, a
Symmetric Encryption (SE) scheme is initialized with security
parameter λ and ciphertext size at least λ bits. To be specific,
these encryption algorithms can be, e.g., Paillier cryptosys-
tem [7] for AHE and AES [10] for SE. See NIST Special
Publication 800-57 [11] for key length recommendations.

Finally, Init generates two random µ1,2-bit integers m1,2,
respectively. It outputs AHE’s public key as the public part
and AHE’s private key together with SE’s key and m1,2 as
the private part.

ID Granting Algorithm – Grant

The ID Granting Algorithm might very much depend on
the policy in use. E.g., we can assume that it increments and
returns a time-dependent λ-bit counter (the design allows for
remembering certain a part of its history, cf. Definition 3).
Grant checks whether the input data is shorter than δ bits and
returns ⊥ if not. Note that any valid output must not depend
on the data at all.

Encryption Algorithm – E

The Encryption Algorithm receives an ID denoted by b and
corresponding data d to be encrypted. It creates a plaintext p
using the secret m1,2 as follows:

p =
(
SE(b) ·m1 + d

)
·m2. (9)

Finally, it encrypts the plaintext with AHE’s public key into
a ciphertext c = Esk(b, d) = AHE

(
(SE(b) ·m1 + d) ·m2

)
and

outputs this.

Addition Algorithm – Add

The Addition Algorithm exploits the homomorphic property
of the underlying AHE to sum the ciphertexts with respective
weights according to the provided list; the homomorphic
ciphertext addition will be denoted by ⊕. If more than 2ν

individual data is to be added, it returns ⊥.
Note that for a non-negative list B corresponding to the

data (di)
n
i=1, where B[bi] = ni, B[b] = 0 for b 6∈ {bi}ni=1,∑n

i=1 ni ≤ 2ν , the homomorphic property ensures

Addpk
(
B, (ci)ni=1

)
=

n⊕
i=1

ni · ci =
n⊕
i=1

ni ·AHE(pi) =

=AHE

((
m1 ·

n∑
i=1

ni · SE(bi) +
n∑
i=1

ni · di
)
·m2

)
(10)

while preventing plaintext overflow, cf. Equation 8, and keep-
ing m1 >

∑
ni · di, cf. Equation 6. This ensures that the

individual sums are decodable with the knowledge of m1,2.

Decryption Algorithm – D

The Decryption Algorithm first checks whether the received
list of ID’s B is compliant with given policy P and returns ⊥
if not. Then it decrypts the ciphertext with the private key of
AHE into p̃ and ensures that p̃ mod m2 = 0 while returning ⊥
if not. Next, it computes b̃SE = p̃÷ (m1m2), cf. Equation 10,
symmetric encryptions of bi’s and checks if

b̃SE
?
=

n∑
i=1

ni · SE(bi) (11)

while returning ⊥ in case of negative result. Finally, it returns
the data part extracted as d̃ = (p̃ ÷ m2) mod m1 while it
should hold

d̃ =

n∑
i=1

ni · di. (12)

Algorithm 1 Decryption Algorithm
1: function D(B,P; sk,B, c)
2: if B 6∈ P then return ⊥
3: p̃ = AHE−1(c)
4: if p̃ mod m2 6= 0 then return ⊥
5: b̃SE = p̃÷ (m1m2)
6: bSE =

∑
b∈B B[b] · SE(b)

7: if b̃SE 6= bSE then return ⊥
8: d̃ = (p̃÷m2) mod m1

9: return d̃

VI. SECURITY ANALYSIS

In this section, we analyze the design of our VERAGREG
scheme with respect to different notions of security. First, we
focus on indistinguishability based on the underlying AHE
scheme, second, we discuss the countermeasures with respect
to list non-malleability as introduced in Definition 6.

A. Indistinguishability

The following theorem states that our VERAGREG scheme
can achieve it for an active non-adaptive adversary (IND-
CCA1).

Theorem 9. If the underlying AHE scheme is IND-CCA1-
secure, our VERAGREG scheme is also IND-CCA1-secure.

Proof. Let us assume for contradiction that there exists a
VERAGREG-IND-CCA1-adversary AV with a non-negligible
advantage. We will use AV to construct an AHE-IND-CCA1-
adversary AH to beat the AHE-IND-CCA1-challenger CH ,
see Figure 2. We will show that AH has non-negligible
advantage which will conclude the proof.

CH
AHE

oracles

AHE-
IND-CCA1

game
←−−−−−−−→ AH

VERAGREG

scheme

VERAGREG-
IND-CCA1

game
←−−−−−−−−→ AV

non-negl.
advantage

Fig. 2. AHE-IND-CCA1 and VERAGREG-IND-CCA1 games.

First, let AH instantiate our VERAGREG scheme, except
for the underlying AHE scheme—AH will rather perform any
AHE operation by querying CH ’s encryption and decryption
oracles. From this point, AV will interact with AH as if AH
were a VERAGREG-IND-CCA1-challenger:
• encryption and decryption queries of AV are performed

by AH ’s internal VERAGREG scheme while all AHE
operations are delegated to CH ’s oracles,

• AV ’s challenge plaintexts are processed into VERAGREG
plaintexts and forwarded as AHE-IND-CCA1 game chal-
lenge plaintexts to the challenger CH ,

• the challenge ciphertext provided by CH is forwarded to
AV (since then only encryption queries are accepted),

• finally, AH answers the same decision as AV .
It follows that the correct answer is the same in both VE-
RAGREG-IND-CCA1 and AHE-IND-CCA1 games, therefore
the advantage of AH winning the AHE-IND-CCA1 game is
the same as that of AV winning the VERAGREG-IND-CCA1
game which was assumed to be non-negligible.

Note that the proposed Paillier cryptosystem was proved by
Armknecht et al. [12] to be IND-CCA1-secure, i.e., a VE-
RAGREG scheme employing it is IND-CCA1-secure as well.
However, IND-LCCA2-security remains an open question and
it is very important since the scheme offers a decryption oracle
by default.

B. List Non-Malleability

The VERAGREG’s list is the very feature that enabled
us to define the extensions L-NM and L-CCA2 that aim at
preventing trivial attacks in case of the original NM and
CCA2 notions, respectively. Let us remind that our extended
definitions disallow the Adversary to submit any ciphertext

including the challenge’s ID within the attached list. In order
to achieve our extended notions of security, certain counter-
measures that aim at preventing from cheating the list must
be employed in a VERAGREG scheme.

In our VERAGREG scheme, consistency of the attached list
is verified by a comparison of two sums, cf. Equation 11.
The Adversary might, e.g., directly modify the sum inside
the ciphertext or create a different combination that sums into
the same value. In order to prevent such cheating, symmetric
encryption of ID’s and secret m1,2 (cf. Equation 9) have been
employed. Neither of them can be omitted, indeed:
• if m1,2 were known and ID’s unencrypted, the Adversary

could use the homomorphic property and add or remove
ID’s at her will;

• if m1,2 were secret and ID’s unencrypted, it might happen
that some subsets of ID’s would have the same sum
(e.g., for (bi = i)4i=1, it holds b1 + b4 = b2 + b3), then
the Adversary might abuse this property and create an
inconsistent ciphertext-list pair;

• if m1,2 were known and ID’s encrypted, it would be
possible to modify the data which is also undesirable.

Hence, in our design, both of these countermeasures are
necessary, however, we leave their sufficiency for any form
of L-NM as an open question.

VII. COMBINING RESULTS

Let us revisit Note 1 which remarks that one can compute
the same results both with policy P and its closure 〈P〉. It
might happen that individual values appear in 〈P〉—let us
illustrate this on an example: if the aggregates

⊕n
i=1 ci and⊕n

i=2 ci are policy-compliant, the service can learn d1 as
well by subtraction of respective plaintexts. However, one can
check in advance that the subgroup generated by her policy
does not harm the original purpose and might modify the
policy accordingly. If this is impossible for any reason, one
can still use the original policy, however, some sort of blurring
of the results needs to be applied. For this purpose, we think of
Differential Privacy as an ideal candidate—for an exhaustive
reading we refer to Dwork et al.: The Algorithmic Foundations
of Differential Privacy [13].

Differential privacy is neither a method nor an algorithm—
it is rather a guarantee that a database access mechanism
preserves certain level of privacy. Its primary goal is to give a
promise to an involved party that, no matter whether she takes
part in the database or not, the results of database queries will
appear to be the same, i.e., any individual “hides” amongst
others. Note that there is a substantial difference between our
scenario and the original use case of differential privacy—the
data does not come from several parties where each of them
desires to hide amongst others, on the contrary, the data comes
from single entity. However, our goal is to hide individual
values inside aggregates (i.e., amongst other values) which
is in the end the same goal as the original one. Applied to
the previous example, if the service learns properly blurred
values

∑n
i=1 di and

∑n
i=2 di, it should learn barely anything

meaningful about d1. Hence we encourage for the use of
differential privacy if applicable.

VIII. DISCUSSION & FUTURE DIRECTIONS

We introduced the abstract VERAGREG Framework which
allows to verify that addition over encrypted data has been
performed honestly. For this framework, novel formal notions
of security as well as concrete algorithms were suggested.

However, the definition of the framework does not implicitly
ensure any formal security guarantee. Hence, it raises the
problem of finding assumptions for the five VERAGREG
algorithms in order to achieve any novel notion of security. In
particular, we proved IND-CCA1 security of our VERAGREG
scheme—to make a step towards a stronger guarantee like
IND-LCCA2 or any form of L-NM, impossibility results in
case of omitting any design feature might help.

In order to achieve practical implementation of the VE-
RAGREG framework, several aspects need to be resolved—
ranging from implementation of involved algorithms in con-
strained devices to usability of differentially private mecha-
nisms in our context. Currently we are preparing an implemen-
tation exploiting RSA module for Paillier operations. Last but
not least, possible alternative approaches shall be considered
and evaluated with respect to specific application.

REFERENCES

[1] “Regulation 2016/679 of the European Parliament (General Data
Protection Regulation),” Official Journal of the European Union,
vol. L119, pp. 1–88, May 2016. [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

[2] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[3] C. Tang and Y. Chen, “Efficient Non-Interactive Verifiable Outsourced
Computation for Arbitrary Functions,” IACR Cryptology ePrint Archive,
vol. 2014, p. 439, 2014.

[4] D. Boneh, G. Segev, and B. Waters, “Targeted Malleability: Homomor-
phic Encryption for Restricted Computations,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ACM, 2012,
pp. 350–366.

[5] X. Liu, R. Deng, K.-K. R. Choo, Y. Yang, and H. Pang, “Privacy-
Preserving Outsourced Calculation Toolkit in the Cloud,” IEEE Trans-
actions on Dependable and Secure Computing, 2018.

[6] C. Gentry, A Fully Homomorphic Encryption Scheme. Stanford
University, 2009.

[7] P. Paillier et al., “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Eurocrypt, vol. 99. Springer, 1999, pp. 223–
238.

[8] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations
Among Notions of Security for Public-Key Encryption Schemes,” in
Annual International Cryptology Conference. Springer, 1998, pp. 26–
45.

[9] M. Prabhakaran and M. Rosulek, “Homomorphic Encryption with CCA
Security,” in International Colloquium on Automata, Languages, and
Programming. Springer, 2008, pp. 667–678.

[10] V. Rijmen and J. Daemen, “Advanced Encryption Standard,” Proceed-
ings of Federal Information Processing Standards Publications, National
Institute of Standards and Technology, pp. 19–22, 2001.

[11] E. B. Barker, “NIST Special Publication 800-57 Rev. 4. Recommenda-
tion for Key Management, Part 1: General,” 2016.

[12] F. Armknecht, S. Katzenbeisser, and A. Peter, “Group Homomorphic
Encryption: Characterizations, Impossibility Results, and Applications,”
Designs, codes and cryptography, vol. 67, no. 2, pp. 209–232, 2013.

[13] C. Dwork, A. Roth et al., “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

