Security Notions for the VERAGREG Framework and Their Reductions

Jakub Klemsa
Czech Technical University in Prague
Prague, Czech Republic
jakub.klemsa@fel.cvut.cz

Ivana Trummová
Czech Technical University in Prague
Prague, Czech Republic
trummiva@fit.cvut.cz

Abstract—Homomorphic encryption enables computations with encrypted data, however, in its plain form, it does not guarantee that the computation has been performed honestly. For the Fully Homomorphic Encryption (FHE), a verifiable variant emerged soon after the introduction of FHE itself, for a single-operation homomorphic encryption (HE), particular verifiable variant has been introduced recently, called the VERAGREG Framework. In this paper, we identify a weakness of List Non-Malleability as defined for the VERAGREG framework—an analogy to the classical Non-Malleability—and define a stronger variant, which addresses the weakness and which we show not to be strengthenable any more. Next, we suggest a decomposition of the abstract VERAGREG framework, introduce novel notions of security for the resulting components and show some reductions between them and/or their combinations. We conjecture that VERAGREG achieves the strongest (and desirable) security guarantee if and only if its building blocks achieve certain, much more tangible properties. Finally, we suggest a simplification to the original VERAGREG instantiation, which now relies on hardness of particular kind of the famous Shortest Vector Problem for lattices.

Index Terms—verifiable homomorphic encryption, formal notions of security, non-malleability

I. INTRODUCTION

Back in 1978, Rivest et al. [15] put forward a vision of a cryptosystem that would allow for arbitrary computations over encrypted data, later known as Fully Homomorphic Encryption (FHE), also referred to as the Holy Grail of Cryptography. After more than 30 years in 2009, the first publicly known FHE scheme was introduced by Gentry [9]. Since then, this field is very active: yet one year later, Gennaro et al. [8] published a variant of FHE that allows for verification of a computation that has been performed. Later, also many improvements and modifications to FHE emerged: theoretical advances [5], [10], implementations [12], [17] as well as enhancements of verifiable variants [4], [7].

Recently, a formal framework that addresses verifiability of single-operation homomorphic encryption (HE) has been introduced, called the VERAGREG Framework [13]. Unlike verifiable FHE schemes (VFHE), VERAGREG enables the processing party to choose dynamically what will be computed and query the data originating party for decryption of the result. However, this comes in exchange for increased verification costs compared to VFHE. Note that these costs appear to be hardly avoidable for dynamic computations—they are in fact present even in VFHE (in the pre-computation phase). After all, in VERAGREG, a policy can be pre-negotiated to avoid, e.g., too many queries, queries with too little values, etc. We provide an overview of VERAGREG in Section II.

Our Contributions

In Section III, we identify a weakness of the notion of List Non-Malleability (LNM; an analogy to the classical Non-Malleability, NM) as defined in [13] and define a stronger variant that takes this weakness into account. We show that, in certain sense, it is not possible to further strengthen our improved definition.

Based on a VERAGREG instantiation introduced in [13] (referred to as the VERAGREG Scheme), we suggest a decomposition of the abstract VERAGREG framework into smaller building blocks in Section IV and propose a verification approach in Section V. For the resulting components, we define formal notions of security, in particular modifications of non-malleability. In our theorems, we show some reductions between these notions and/or their combinations.

Finally, we conjecture that VERAGREG achieves the strongest security notion if and only if its underlying constructs achieve our novel notions in combination with known results. In a specific case, we strengthen the attacker and postulate a lattice problem to be hard in order to satisfy the strongest security guarantee. As a result, we suggest a simplification to the VERAGREG scheme.

II. PRELIMINARIES

Notations and Symbols

Definition 1 (Multiset). Let B be a finite set. We call any $B \in \mathbb{Z}^{|B|} = \mathcal{M}(B)$ a multiset of elements of B, interpreted as a set with (possibly negative) number of repetitions of each $b \in B$; number of repetitions written as $B[b]$.

E.g., for $B = \{\alpha, \beta, \gamma, \delta\}$, a “multiset” $\{\alpha, \beta, \beta, \beta, \delta, \delta\}$ would be written as $B = (1, 3, 0, 2)$ where we assume an implicit ordering on B. We further denote:

- $b \in B$: $B[b] \neq 0$ (\notin respectively),
- $\{b\}$ as a multiset B: $B[b] = 1$, $B[\cdot] = 0$ otherwise,

This work was supported by the Grant Agency of CTU in Prague, grant No. SGS19/109/OHK3/2T/13.
• \((b_i; n_i)_{i=1}^N\) as a multiset \(B: B[b_i] = n_i, B[\cdot] = 0\) otherwise,
• \(n \cdot B\): scalar multiplication in \(\mathbb{Z}[B]\),
• \(B_1 \cup B_2 := B_1 + B_2\), i.e., vector addition in \(\mathbb{Z}[B]\),
• \(\sum_{b \in B} (\cdot)_{b} := \sum_{b \in B} B[b] \cdot (\cdot)_{b}\),
• \(|B| := \sum_{b \in B} 1\), i.e., a sum of \(B[b]\), can be negative,
• \(\mathcal{M}(B)\) where \(b \subseteq B\): a set of such \(B \in \mathcal{M}(B)\) where \(B[b] = 0\) for \(b \in B \setminus b\),
• for a finite set \(A\), let \(A^* = \bigcup_{n=0}^{\infty} A^n\),
• for a function \(f: \mathbb{N} \rightarrow \mathbb{R}^+\), we say that \(f\) is
 o negligible if \(\forall c > 0 \exists k_c \forall k > k_c\), it holds \(f(k) < k^{-c}\),
 also \(f = \text{negl}(k)\),
• overwhelming if \(1 - f\) is negligible, \(f \in \text{OW}\),
• \(a \leftarrow A\): uniformly random draw from the set \(A\) to the variable \(a\),
• \(a / b\): integer division,
• \(\hat{N} := \{1, 2, \ldots, N\}\),
• \(|x|\): \(\ell_1\)-norm of the vector \(x = (x_1, \ldots, x_n)\), i.e., \(\sum_{i=1}^{n} |x_i|\).

The VERAGREG Framework

A formal definition of the VERAGREG framework as per \cite{13} is recalled in Appendix \[A\] however, for a basic understanding, we provide the following simplified definition of the VERAGREG scheme followed by a text description. We also recall the notions of security for VERAGREG which are based on those by Bellare et al. \cite{2} (in particular, we recommend to refresh NM \cite{2} Definition 2.2).

Definition 2 (VERAGREG Scheme; informal). VERAGREG Scheme is a 5-tuple of the following algorithms:

Init. Generate keys for underlying ciphers (additive homomorphic encryption, AHE, and symmetric encryption, SE) and pick (large) random integers \(m_{1,2}\). Output public key of AHE as \(pk\) and secret keys together with \(m_{1,2}\) as \(sk\).

Grant. Input data \(d\), check validity. Grant an ID independent on \(d\), output as \(b\).

\(E_{sk}\). Encrypt input data \(d\) and granted ID \(b\) as

\[c_b = E_{sk}(b, d) = AHE_{pk}(\langle SE_{sk}(b) \cdot m_1 + d \rangle \cdot m_2)\]. (1)

Addp_{pk}. Employ homomorphic addition \(\oplus\) on provided ciphertexts based on a list of ID’s denoted by \(B\) (a multiset; chosen by the processing party),

\[\text{Add}_{pk}(B, (c_b)_{b \in B}) = \bigoplus_{b \in B} c_b\]. (2)

Prevent inner overflow of \(m_{1,2}\) or AHE plaintext (cf. \[1\]) by returning \(\perp\).

\(D_{sk}\). Proceed as follows:

1. function \(D_{sk}(B, c)\)
2. if \(B\) is not policy-compliant then return \(\perp\)
3. \(\hat{p} = AHE^{-1}_{sk}(c)\)
4. if \(\hat{p} \mod m_2 \neq 0\) then return \(\perp\)
5. \(b_{2} = \hat{p} \div (m_1 m_2)\)
6. \(b_{2} = \sum_{b \in B} SE_{sk}(b) \mod \text{dim} B\)

Remark 1. VERAGREG scheme is somewhat homomorphic in the sense outlined in \cite{9}; we insist on the possibility of addition of at least \(2^\nu\) values before an overflow occurs, for a parameter \(\nu\).

Next, we recall the definitions of VERAGREG-specific notions of security as introduced in \cite{13}. Further details and a discussion will be given in Section \[III\].

Definition 3 (LNM; informal). In addition to the definition of Non-Malleability by Bellare et al. \cite{2}, List Non-Malleability (LNM) further requires that the output ciphertexts do not include ID of the challenge within their lists.

Definition 4 (LCCA2; informal). In addition to the definition of Adaptive Chosen Ciphertext Attack by Bellare et al. \cite{2}.
List Adaptive Chosen Ciphertext Attack (LCCA2) restricts the decryption oracle during the second phase: it refuses to decrypt any ciphertext that includes ID of the challenge within its list.

Theorem (LNM-LCCA2 \iff IND-LCCA2, [13] Thm. 8). A **VeraReg** framework is LNM-LCCA2-secure if and only if it is IND-LCCA2-secure.

Theorem (IND-CCA1_{AHE} \Rightarrow IND-CCA1_{V}, [13] Thm. 9). Let V be a **VeraReg** scheme. If its AHE is IND-CCA1-secure, V is also IND-CCA1-secure.

III. WEAK AND STRONG LIST NON-MALLEABILITY

In 2013, Armknecht et al. [1] have shown Paillier AHE to be IND-CCA1-secure, hence by [13] Thm. 9, we obtain an IND-CCA1-secure **VeraReg** scheme. However, IND-CCA1 does not tell anything about the verification feature since it is already achieved by the underlying plain AHE. Therefore we insist on stronger notions of security that cannot be achieved by a plain AHE, e.g., LNM.

In particular, the notion of LNM aims to guarantee that the list of ID’s cannot be modified without being detected (or the data extracted), however, it does not say anything about modification of the data itself. In this section, we identify this weakness and suggest a stronger variant of LNM which, in addition, aims to guarantee data non-malleability. In Definition 2 there appeared certain countermeasures—namely secret $m_{1,2}$ and encryption of ID’s—let us discuss their necessity for the (prospective) stronger notions.

Proposition 5. No matter whether $m_{1,2}$ are private or public, if SE were an identity mapping, LNM would not be achievable by the **VeraReg** scheme.

Proof. For a granting algorithm that grants ID’s starting from 1 and increments them by 1, the adversary wins any LNM experiment as follows: she submits at least one encryption query and after obtaining the challenge (b^*, c^*), she answers with $\{(1, b^* - 1), c^*\}$ together with an identity relation. Note that such an answer is accepted as a successful attack: indeed, b^* is not present in the list, the pair passes verification and the identity relation clearly holds.4

Remark 2. Such a breach also works in case the adversary knows the (anyhow) modified ID’s (e.g., by a hash function) and is able to combine two distinct multisets of them to yield the same sum, cf. line 6 and 7 in D_{sk} in Definition 2

Proposition 6. If $m_{1,2}$ were public, it would be possible to modify the data inside a **VeraReg** ciphertext effectively.

Proof. The adversary can encrypt d as $c = AHE(d \cdot m_2)$ and add it by $+$ to a **VeraReg** ciphertext without being detected by the decryption algorithm.5

In the scenario of Proposition 6 there does not appear to be any evidence that ease of data modification contradicts LNM, indeed, it still appears to be hard to extract the data or modify the list. However, even data modification shall be avoided. This leads us to another and yet stronger notion of security.

The weakness of the definition of LNM (Definition 3) is that it does not accept a ciphertext, where only data has been modified, as a valid attack. For a stronger security guarantee, only trivially constructed ciphertexts (i.e., those combining existing ciphertexts using the addition algorithm) shall not be accepted while any other (including that one identified in the proof of Proposition 6) shall be accepted as a valid attack. In Table 4 we provide a summary of differences between the original and the desired version of list non-malleability, referred to as Weak List Non-Malleability (WLMN, formerly LNM) and Strong List Non-Malleability (SLNM), respectively. Formal definition of SLNM follows.

Definition 7 (Trivial Breaches). The set of Trivial Breaches with respect to a challenge ID-ciphertext pair (b^*, c^*), denoted by $TB(b^*, c^*)$, is a set of all list-ciphertext pairs which are computable from yet obtained ID-ciphertext pairs $(b_i, c_i)_{i=1}^n \ni (b^*, c^*)$. $b = \{b_1, \ldots, b_n\}$, using Add Algorithm or re-randomization (if applicable), and include b^* in the list:

$$TB(b^*, c^*) = \left\{ (B, \text{Add}_{pk}(B, (c_i)_{i=1}^n)) \mid B \in M(B) \big|_{b^*}, b^* \in B \right\} \ (3)$$

The following definition is given in the format of the definition of NM by Bellare et al. [2] Definition 2.2] in order to simplify its understanding for the reader.

Definition 8 (Strong List Non-Malleability). Let $V = (\text{Init}, \text{Grant}, E, \text{Add}, D)$ be a **VeraReg** framework and $A = (A_1, A_2)$ an adversary, for $atk \in \{\text{CPA}, \text{CCA1}, \text{LCCA2}\}$ and $\lambda \in \mathbb{N}$ let

$$\text{Adv}^{\text{SLNM-atk}}_{V, A}(\lambda) = \Pr[\text{Exp}^{\text{SLNM-atk}-1}_{V, A}(\lambda) = 1] - \Pr[\text{Exp}^{\text{SLNM-atk}0}_{V, A}(\lambda) = 1] \tag{4}$$

where, for $q \in \{0, 1\}$:

1: experiment $\text{Exp}^{\text{SLNM-atk}-q}_{V, A}(\lambda)$
2: $(pk, sk) \leftarrow \text{Init}(\lambda)$
3: $(M, s) \leftarrow A_1^{pk, sk}(pk)$
4: $d_0, d_1 \leftarrow M; b^* \leftarrow \text{Grant}_{\lambda \cdot b}(d_1); c^* \leftarrow E_{sk}(b^*, d_1)$
5: $(R, (B(i), (c^{(i)})_{i=1}^N)) \leftarrow A_2^{pk, D^*}(M, s, (b^*, c^*))$
6: $d \leftarrow D_{sk}(B(i), (c^{(i)})_{i=1}^N)$
7: if $\forall i \in N : (B(i), (c^{(i)})_{i=1}^N) \notin TB(b^*, c^*)$ and $\land \land \not\in d \land R(d, q, d)$ then
8: return 1
9: else
10: return 0

where $E(d) = (b \leftarrow \text{Grant}_{\lambda \cdot b}(d), c \leftarrow E_{sk}(b, d))$ and, if $atk = \text{CPA}$, then $D(\cdot) = \varepsilon$ and $D^*(\cdot) = \varepsilon$,
if $atk = \text{CCA1}$, then $D(\cdot) = D_{sk}(\cdot)$ and $D^*(\cdot) = \varepsilon$,
if $atk = \text{LCCA2}$, then $D(\cdot) = D_{sk}(\cdot)$ and $D^*(B, c) = D_{sk}(B, c)$ if $b^* \notin B$, or $D^*(B, c) = \perp$ if $b^* \in B$.

\[\]
We say that \(V \) is SLNM-atk-secure if, for every polynomial \(p(\cdot) \), the following holds: if \(A \) runs in time \(p(\lambda) \), outputs \(M \subseteq D \) sampleable in time \(p(\lambda) \), and outputs a relation \(R \) computable in time \(p(\lambda) \), then \(\text{Adv}_{V,A}^{\text{SLNM-atk}}(\cdot) \) is negligible.

Note 3. The differences between the classical NM and SLNM are in the encryption oracle access that is provided to the SLNM adversary, in the ciphertext format and, in particular, in the condition on line \(2 \) of Experiment \(\text{Exp}_{V,A}^{\text{SLNM-atk-q}} \); the original \(y \not\in y \) is replaced with \((B^{(i)}, c^{(i)}) \not\in TB(b^*, c^*) \) — both dealing with a trivial breach, cf. Table \(\text{I} \). Further recall in the condition on line 7 of Experiment \(\text{Exp}_{V,A}^{\text{SLNM-atk-q}} \), the following holds: if \(\text{Adv}_{V,A}^{\text{SLNM-atk}}(\cdot) \) requires certain effort to understand its intended meaning—in particular the meaning of the condition on line \(2 \)—since the condition combines:

- a non-triviality and validity check, with
- a relation \(R \) provided by the adversary.

The goal of the relation \(R \) is to distinguish a non-trivial attack that targets the data in the challenge (i.e., \(d_i \) encrypted in \(c^* \)) from a trivial attack that blindly targets an uncontrolled subset of data. Hence the relation should hold for \(q = 1 \) since \(d_0 \) was encrypted as the challenge \(c^* \), cf. line \(3 \) but it should not hold for \(q = 0 \) since \(d_0 \) was a randomly drawn piece of data intended for this check. It follows that an attack with \(\text{Adv} = 1 \) is only possible if the condition

\[
\forall i \in \hat{N} : (B^{(i)}, c^{(i)}) \not\in TB(b^*, c^*) \land \bot \not\in d \land R(d_q, d).
\]

(\text{WLN}\text{M})

Remark 4. The definition of SLNM (also that of NM by Bellare et al.) requires certain effort to understand its intended meaning—in particular the meaning of the condition on line \(2 \)—since the condition combines:

- a non-triviality and validity check, with
- a relation \(R \) provided by the adversary.

In order to support the definition of SLNM, we show in the following theorem that SLNM is indeed stronger than WLN.

Theorem 9 (SLNM-atk \(\Rightarrow \) WLN-atk). If a \textsc{VeraGreg} framework \(V \) resists SLNM in an attack scenario, then it resists WLN in the same attack scenario.

Proof. Find the proof in Appendix \texttt{B-B}

\[\square\]

Corollary 10. SLNM-LCCA2 \(\Rightarrow \) WLN-LCCA2 \(\iff \) IND-LCCA2.

In particular, we obtained the so far strongest notion of security for the \textsc{VeraGreg} framework — SLNM-LCCA2. Note that SLNM cannot be strengthened any more by the means of rejected breaches treated as trivial, cf. Table \(\text{I} \).

IV. \textsc{VeraGreg} Decomposition

In order to study theoretical guarantees of particular \textsc{VeraGreg} instantiations, we suggest how the abstract \textsc{VeraGreg} framework may internally work. We decompose the encryption algorithm into components for which we define novel notions. By this approach, we delegate the “global” guarantees towards the components whose novel notions will appear to be more tangible. We begin the decomposition of \textsc{VeraGreg} encryption by encapsulating an encoding of the ID-data pair into an additionally homomorphic ciphertext, cf. (\texttt{I}) in Definition \(\texttt{I} \).

Definition 11 (\textsc{VeraGreg} Encoding Framework). Let (\textit{Init}, \textit{Grant}, \textit{AHE}, \textit{Add}, \textit{Dec}) be a \textsc{VeraGreg} framework, AHE: \(P_A \rightarrow C \) an additionally homomorphic encryption scheme where \(\oplus \) denotes its ciphertext addition operation, Enc: \(K_S \times B \times D \rightarrow P_A \) an encoding algorithm and Dec: \(K_S \times M(B) \times P_A \rightarrow D \cup \{ \bot \} \) a decoding algorithm. Let these algorithms satisfy

- \(\text{Init} \) further inits AHE with a key pair \((pk_A, sk_A)\) while it stores \(pk_A \) into \(pk \) and \(sk_A \) into \(sk \),
- \(\text{Enk}(b, d) = AHE_{pk_A}(\text{Enc}_{sk_A}(b, d)) \),
- \(\text{Add}_{sk}(B, (c_b)_{b \in B}) = \bigoplus_{b \in B} c_b \),
- \(\text{Dsk}(B, c) = \text{Dec}_{sk}(B, AHE_{sk_A}^{-1}(c)) \).

We call the 6-tuple (\textit{Init}, \textit{Grant}, AHE, \textit{Enc}, \textit{Add}, \textit{Dec}) the \textsc{VeraGreg} Encoding Framework (VGE).

Lemma 12. Let (\textit{Init}, \textit{Grant}, AHE, \textit{Enc}, \textit{Add}, \textit{Dec}) be a VGE. Then for any valid set of ID-data pairs \((b, d_b)_{b \in B}\), \(b \subseteq B \), any policy-compliant \(B \in M(B) \big|_b \) and a key pair \((pk, sk) \leftarrow \text{Init}_A \) it holds

\[
\text{Dec}_{sk}(B, \bigoplus_{b \in B} \text{Enc}_{sk_A}(b, d_b)) = \sum_{b \in B} d_b.
\]

(7)

\[\textbf{Proof.}\] Find the proof in Appendix \texttt{B-A} \[\square\]

Definition 13. Let (\textit{Init}, \textit{Grant}, AHE, \textit{Enc}, \textit{Add}, \textit{Dec}) be a VGE. Then for any valid set of ID-data pairs \((b, d_b)_{b \in B}\), \(b \subseteq B \), any policy-compliant \(B \in M(B) \big|_b \), \(d_b := \sum_{b \in B} d_b \)
and a key pair \((pk, sk) \leftarrow \text{Init}_\lambda\), we define Augmented Encoding

\[
\text{Enc}'_{sk}(\mathcal{B}, d_B) := \sum_{b \in \mathcal{B}} \text{Enc}_{sk}(b, d_b).
\]

In the following lemma, we show that \(\text{Enc}'\) is well defined.

Lemma 14. Under the assumptions of Definition 13 it holds

\[
\text{Enc}'_{sk}(\{b\}, d_B) = \text{Enc}_{sk}(b, d_b), \quad \text{and}
\]

\[
\text{Dec}_{sk}(\mathcal{B}, \text{Enc}'_{sk}(\mathcal{B}, \sum_{b \in \mathcal{B}} d_b)) = \sum_{b \in \mathcal{B}} \text{Dec}_{sk}(b, \sum_{b \in \mathcal{B}} \text{Enc}_{sk}(b, d_b)) = d_B.
\]

i.e., \(\text{Enc}'\) is an augmentation of \(\text{Enc}\) and it is homomorphic in the sense of Equation (10). \(\text{Enc}_{sk}(\mathcal{B}, \sum_{b \in \mathcal{B}} d_b)\) decodes the same as \(\sum_{b \in \mathcal{B}} \text{Enc}_{sk}(b, d_b)\).

Proof. Equation (9) holds by Definition 13. Equation (10) holds by Definition 13 and Equations (9) and (22). \(\square\)

In the following definition, we introduce a non-malleability notion for \(\text{Enc}\) which aims to serve as a prospective guarantee of SLNM of a VGE.

Definition 15 (Encoding Non-Malleability). Let \(\text{Init}, \text{Enc}, \text{Dec}\) be respective algorithms of a VGE \(\mathcal{V}\), Grant a granting algorithm and let \(\mathcal{A} = (A_1, A_2)\) be an adversary. For \(\text{atk} \in \{\text{CEA0}, \text{CEA1}, \text{CEA2}\}\) and \(\lambda \in \mathbb{N}\) let

\[
\text{Adv}_{\mathcal{V}, \mathcal{A}}^{\text{ENM-\text{atk}}}(:) = \Pr[\text{Exp}_{\mathcal{V}, \mathcal{A}}^{\text{ENM-\text{atk}}}(:) = 1] - \Pr[\text{Exp}_{\mathcal{V}, \mathcal{A}}^{\text{ENM-\text{atk}}}(:) = 0]
\]

where, for \(q \in \{0, 1\}\),

1: experiment \(\text{Exp}_{\mathcal{V}, \mathcal{A}}^{\text{ENM-\text{atk}}}(:, \lambda)\)
2: \((pk, sk) \leftarrow \text{Init}_\lambda\)
3: \((M, s) \leftarrow A_1^\lambda(pk)\)
4: \(d_0, d_1 \leftarrow M; b^* \leftarrow \text{Grant}_{\lambda, b}(d_1); e^* \leftarrow \text{Enc}_{sk}(b^*, d_1)\)
5: \((\mathcal{B}^{(i)}, \mathcal{B}_{\text{CE}}^{(i)}, e^{(i)})_{i=1}^N \leftarrow A_2^\lambda(M, s, b^*)\)
6: \(d \leftarrow \text{Dec}_{sk}(\mathcal{B}^{(i)}, \sum_{b \in \mathcal{B}^{(i)}} e_b + e^{(i)})_{i=1}^N\)
7: \(\text{if } \forall i \in \mathcal{N}: (e^{(i)} \neq 0 \lor \mathcal{B}_{\text{CE}}^{(i)} \neq \mathcal{B}_{\text{CE}}^{(i)}) \land\)
\[\land \perp \notin d \land R(d_q, d) \quad \text{then}
\]
8: \(\text{return } 1\)
9: \(\text{else}\)
10: \(\text{return } 0\)

where \(\mathcal{E}(d) = \text{Grant}_{\lambda, b}(d) \rightarrow b\)

while it computes and keeps respective \(e_b = \text{Enc}_{sk}(b, d)\)
and,

- if \(\text{atk} = \text{CEA0}\), then \(D(\cdot) = \varepsilon\) and \(D^*(\cdot) = \varepsilon\),
- if \(\text{atk} = \text{CEA1}\), then \(D(\mathcal{B}, \mathcal{B}_{\text{CE}}, e) = \) \(= \text{Dec}_{sk}(\mathcal{B}, \sum_{b \in \mathcal{B}_e} e_b + e)\)
and \(D^*(\cdot) = \varepsilon\),
- if \(\text{atk} = \text{CEA2}\), then \(D(\mathcal{B}, \mathcal{B}_{\text{CE}}, e) = \) \(= \text{Dec}_{sk}(\mathcal{B}, \sum_{b \in \mathcal{B}_e} e_b + e)\)
and \(D^*(\mathcal{B}, \mathcal{B}_{\text{CE}}, e) = \) \(= \text{Dec}_{sk}(\mathcal{B}, \sum_{b \in \mathcal{B}_e} e_b + e)\)
if \(b^* \notin \mathcal{B}\), or
\[D^*(\mathcal{B}, \mathcal{B}_{\text{CE}}, e) = \perp \text{ if } b^* \in \mathcal{B}.
\]

We say that \(\mathcal{V}\)’s encoding is \(\text{ENM-\text{atk}}\)-secure if, for every polynomial \(p(\cdot)\), the following holds: if \(A\) runs in time \(p(\lambda)\), outputs \(M \subseteq D\) sampleable in time \(p(\lambda)\), and outputs a relation \(R\) computable in time \(p(\lambda)\) for every \(\lambda \in \mathbb{N}\), then \(\text{Adv}_{\mathcal{V}, \mathcal{A}}^{\text{ENM-\text{atk}}}(:)\) is negligible.

Note 5. In the previous definition, \(\text{CEA}\) stands for Chosen Encoding Attack.

Remark 6. In the \(\text{ENM}\) experiment, the adversary gets absolutely no information related to actual encodings or data – she only gets ID’s which are required to be independent on actual data, cf. Definition 2. Hence, from the point of view of the adversary, it appears like she were given black boxes labelled by ID’s.

Theorem 16 (SLNM-\text{atk} \Rightarrow \text{ENM-\text{atk}}). If a VGE is \(\text{SLNM-\text{atk}}\)-secure, then its encoding is \(\text{ENM-\text{atk}}\)-secure, for CPA-\text{CEA0}, \text{CEA1-CEA1} and \text{LCCA2-CEA2} pairs of \text{atk-\text{atk}}.

Proof. Find the proof in Appendix B-C. \(\square\)

Before we state a restricted variant of the opposite implication, we define an AHE scheme which can be perceived to operate with black boxes, cf. Remark 6.

Definition 17 (Perfect AHE). Perfect Additively Homomorphic Encryption scheme (AHE*), is an AHE scheme where let \(\lambda, \delta \in \mathbb{N}\) be the security and data space parameter, respectively, \(2^{\delta} \ll 2^\lambda\), \(D = \{0, 1\}^\delta\) the plaintext space, \(C = \mathcal{M}((\{0, 1\}^\lambda)\) the ciphertext space (multisets of \(\lambda\)-bit strings) and \(DB\) a database/mapping, \(DB : \{0, 1\}^\lambda \rightarrow \mathcal{D} \cup \{\perp\}\) initialized as \(DB(\perp) = \perp\). We describe the encryption and decryption oracles \(\mathcal{E}, D\), respectively, and the ciphertext addition operation \(\oplus\).

Encryption Oracle.
1: \(function\ \mathcal{E}_{DB}(d)\)
2: \(c \leftarrow \{0, 1\}^\lambda\)
3: \(DB(c) \leftarrow d\)
4: \(return\ C \leftarrow \{c\}\)

Addition \(\oplus\).
1: \(function\ \oplus((C_i)_{i=1}^N, (n_i)_{i=1}^N)\)
2: \(return\ \mathcal{C} \leftarrow \bigcup_{i=1}^N n_i \cdot C_i\)

Decryption Oracle.
1: \(function\ D_{DB}(C)\)
2: \(if \exists c \in \mathcal{C}, c \notin DB then return \perp\)
3: \(decompose\ the\ multisit\ \mathcal{C}\ into\ (c_i, n_i)_{i=1}^N\)
Theorem 18 (ENM-atk \(\Rightarrow\) SLNM-atk\(_{\text{AHE}^*}\)). Let a VGE \(V\) use the perfect AHE. If its encoding is ENM-atk\(^*\)-secure, then it is SLNM-atk-secure for CEA0-CPA, CEA1-CCA1 and CEA2-LCCA2 pairs of atk\(^*\)-atk.

Corollary 19. If a VGE employs AHE\(^*\), it is SLNM-atk-secure if and only if its encoding is ENM-atk\(^*\)-secure, for respective pairs of atk\(^*\)-atk.

In order to get the definitions of ENM and SLNM yet closer to each other, we define a variant of the ENM experiment where the adversary has access to actual ciphertexts, in addition to ID’s, i.e., similar to the SLNM experiment.

Definition 20 (ENM-atk\(_{\text{AHE}}\)). Let AHE be an additively homomorphic encryption scheme and \((\text{pk}_A, \text{sk}_A)\) its keypair. If in an ENM-atk experiment (as per Definition \(15\)), atk \(\in\) \{CEA0, CEA1, CEA2\}, the adversary is further given \(\text{pk}_A\) (or AHE encryption and addition oracles), the encryption oracle \(E\) returns in addition \(c_b = \text{AHE}(e_b)\), and the decryption oracle \(D\) works instead as follows:

\[
D(B, c) = \text{Dec}_{\text{sk}_A}(B, \text{AHE}^{-1}_{\text{sk}_A}(c)),
\]

we denote this experiment as ENM-atk\(_{\text{AHE}}\).

Lemma 21 (ENM-atk\(_{\text{AHE}}\) \(\Rightarrow\) ENM-atk \(\iff\) ENM-atk\(_{\text{AHE}^*}\)). Let AHE be an additively homomorphic encryption scheme, AHE\(^*\) the perfect additively homomorphic encryption and atk \(\in\) \{CEA0, CEA1, CEA2\}. ENM-atk\(_{\text{AHE}^*}\) security implies ENM-atk security, which is equivalent to ENM-atk\(_{\text{AHE}^*}\) security.

Proof. \(\Rightarrow\): In the ENM-atk\(_{\text{AHE}^*}\) experiment, the adversary has additional information, as opposed to the original ENM-atk experiment.

\(\iff\): In the ENM-atk\(_{\text{AHE}^*}\) experiment, the adversary only has an access to AHE\(^*\) ciphertexts in addition to the ENM-atk experiment. However, these are effectively random values, hence she cannot make any advantage of it.

To conclude the first VERA\(_{\text{GREG}}\) decomposition step, we conjecture that, providing the adversary with IND-CCA1-secure AHE ciphertexts instead of AHE\(^*\) “black boxes”, the opposite implication in Lemma \(21\) and a variant of Theorem \(18\) hold. Note that such ciphertexts should also only allow for encryption of custom plain data and ciphertext addition, cf. Definition \(15\) and \(17\) hence we consider these conjectures reasonable. As a result, this leads to a conjecture on an equivalence of SLNM and ENM of a VGE that employs an IND-CCA1-secure AHE.

Conjecture 22 (ENM-atk\(_{\text{AHE}}\) \(\Rightarrow\) ENM-atk\(_{\text{IND-CCA1}}\)). Let AHE be IND-CCA1-secure. If a VGE encoding is ENM-atk\(_{\text{AHE}}\)-secure, then it is ENM-atk\(_{\text{IND-CCA1}}\)-secure, for atk \(\in\) \{CEA0, CEA1, CEA2\}.

Conjecture 23 (ENM-atk\(_{\text{IND-CCA1}}\) \(\Rightarrow\) SLNM-atk). Let AHE be IND-CCA1-secure. If a VGE using AHE has an ENM-atk\(_{\text{IND-CCA1}}\)-secure encoding, then it is SLNM-atk-secure, for respective pairs of atk\(^*\)-atk.

Conjecture 24 (SLNM-atk \(\iff\) ENM-atk\(^*\)). Let AHE be IND-CCA1-secure. A VGE using AHE is SLNM-atk-secure if and only if it has an ENM-atk\(^*\)-encoding, for respective pairs of atk\(^*\)-atk.

V. Verification using Sum Comparison

In the previous section, we decomposed VERA\(_{\text{GREG}}\) encryption into encoding encapsulated by AHE. In this section, we focus on encoding, in particular, we specify the verification procedure. First, we suggest to aggregate the ID-related information by addition. Remind Proposition \(5\) which (in certain sense) calls for an unpredictable modification of ID’s. In the following, we will model the unpredictable modification by a Random Oracle (RO). Recall that a random oracle \(RO\): \(X \rightarrow Y\) is basically a randomly drawn function \(f\): \(X \rightarrow Y\); originally formulated by Bellare et al. \(3\).

Definition 25 (VERA\(_{\text{GREG}}\) Internal Encoding Framework). Let \((\text{Init}, \text{Grant}, \text{AHE}, \text{Enc}, \text{Add}, \text{Dec})\) be a VERA\(_{\text{GREG}}\) encoding framework, \(RO\): \(B \rightarrow (R, +)\) a random oracle, \(\text{Inc}\): \(K_S \times \{\top\} \rightarrow P_A\) an internal encoding algorithm and \(\text{ldc}\): \(K_S \times \{\top\} \rightarrow \{\top\} \cup \{\downarrow\}\) an internal decoding algorithm.

Let these algorithms satisfy

- \(\text{Enc}_{\text{sk}}(b, d) = \text{Inc}_{\text{sk}}(\text{RO}(b), d)\), and
- \(\text{Dec}_{\text{sk}}(B, c)\) proceeds as follows:

1. \(\text{function } \text{Dec}_{\text{sk}}(B, c)\)
2. \(\text{if } B \text{ is not policy-compliant then return } \downarrow\)
3. \(\text{if } \text{ldc}_{\text{sk}}(e) = \downarrow \text{ then return } \downarrow\)
4. \((r, d) \leftarrow \text{ldc}_{\text{sk}}(e)\)
5. \((r, d) \leftarrow \text{ldc}_{\text{sk}}(e)\)
6. \(\text{return } d\)

We call the 7-tuple \((\text{Init}, \text{Grant}, \text{AHE}, RO, \text{Inc}, \text{Add}, \text{ldc})\) the VERA\(_{\text{GREG}}\) Internal Encoding Framework (VIEG).

Lemma 26. Let \((\text{Init}, \text{Grant}, \text{AHE}, RO, \text{Inc}, \text{Add}, \text{ldc})\) be a VIGIE. Then for any valid set of ID-data pairs \(b, d\) \(\in\) \(B\), \(b \in B\), \(r_b := \text{RO}(b)\), any \(B \in \mathcal{M}(B)\), and a key pair \((\text{pk}, \text{sk})\) \(\leftarrow \text{Init}\), it holds

\[
\text{ldc}_{\text{sk}}\left(\sum_{b \in B} \text{Inc}_{\text{sk}}(r_b, d_b)\right) = \left(\sum_{b \in B} r_b, \sum_{b \in B} d_b\right).
\]

Proof. Find the proof in Appendix \(B-A\)
Corollary 27. Inc is homomorphic in the sense of
\[
\text{ldc}_\mathcal{sk} \left(\sum_{b \in B} \text{lnc}_\mathcal{sk}(r_b, d_b) \right) = \left(\sum_{b \in B} r_b, \sum_{b \in B} d_b \right) = \\
\text{ldc}_\mathcal{sk} \left(\text{lnc}_\mathcal{sk} \left(\sum_{b \in B} r_b, \sum_{b \in B} d_b \right) \right),
\]
(14)
i.e., a sum of Inc’s decodes the same as Inc of respective sums.

Proof. Let \(b_\Sigma \) be a valid ID, let us enforce \(\text{RO}(b_\Sigma) = \sum_{b \in B} r_\Sigma \) and let \(d_\Sigma = \sum_{b \in B} d_b \). The claim follows by Lemma 26 with \(\langle b_\Sigma, d_\Sigma \rangle \) and \(B = \{b_\Sigma\} \).

Note that in our definition of the VERAGreg internal encoding framework, the Inc/ldc algorithms still implement a portion of VERAGreg security. Indeed, it should be still impossible to compute a valid encoding of any piece of data. Let us formulate this property in the following definition (cf. Definition 15).

Definition 28 (Internal Encoding Non-Malleability). Let Init, Inc, ldc be respective algorithms of a VGIE \(\mathcal{V} \), RO its random oracle. Grant a granting algorithm and let \(A = (A_1, A_2) \) be an adversary. For \(\text{atk} \in \{\text{CIA0}, \text{CIA1}, \text{CIA2}\} \) and \(\lambda \in \mathbb{N} \) let
\[
\text{Adv}^{\text{INM-atk}}_{\mathcal{V}, A}(\lambda) = \text{Pr}[\text{Exp}^{\text{INM-atk}}_{\mathcal{V}, A}(\lambda) = 1] - \text{Pr}[\text{Exp}^{\text{INM-atk-1}}_{\mathcal{V}, A}(\lambda) = 1]
\]
(15)
where, for \(q \in \{0, 1\}, 1: \) experiment \(\text{Exp}^{\text{INM-atk-q}}_{\mathcal{V}, A}(\lambda) \)
2: \((pk, sk) \leftarrow \text{Init}(\lambda)\)
3: \((M, s) \leftarrow A_r^E \langle pk \rangle\)
4: \(d_0, d_1 \leftarrow M; b^* \leftarrow \text{Grant}_{\lambda, b}(d_1); r^* \leftarrow \text{RO}(b^*); e^* \leftarrow \text{ldc}_{\mathcal{sk}}(r^*, d_1)\)
5: \((R, (E_i), (e_i)) \leftarrow A_r^E \langle M, s, b^* \rangle\)
6: \((r, d) \leftarrow \text{ldc}_{\mathcal{sk}} \left(\sum_{\text{b} \in B} e_{\text{b}} + e_i \right)\)
7: if \(\forall i \in \bar{N} : e_i \neq 0 \wedge \nexists (r, d) \land R(d, r) \) then
8: return 1
9: else
10: return 0
\]
where \(E(d) = b \leftarrow \text{Grant}_{\lambda, b}(d) \) while it computes and keeps \(r = \text{RO}(b) \) and respective \(e_b = \text{lnc}_{\mathcal{sk}}(r, d) \) and,

if \(\text{atk} = \text{CIA0} \), then \(D(.) = e \) and \(D^*(.) = e \),
if \(\text{atk} = \text{CIA1} \), then \(D(B_\Sigma, e) = \text{ldc}_{\mathcal{sk}}(\sum_{b \in B_\Sigma} e_b + e) \)
and \(D^*(.) = e \),
if \(\text{atk} = \text{CIA2} \), then \(D(B_\Sigma, e) = \text{ldc}_{\mathcal{sk}}(\sum_{b \in B_\Sigma} e_b + e) \)
and \(D^*(B_\Sigma, e) = \text{ldc}_{\mathcal{sk}}(\sum_{b \in B_\Sigma} e_b + e) \)
if \(b^* \notin B_\Sigma \), or \(D^*(B_\Sigma, e) = \perp \) otherwise.

We say that \(Y \)'s internal encoding is \(\text{INM-atk-secure} \) if, for every polynomial \(p(.) \), the following holds: if \(A \) runs in time \(p(\lambda) \), outputs \(M \subseteq D \) sampleable in time \(p(\lambda) \), and outputs a relation \(R \) computable in time \(p(\lambda) \) for every \(\lambda \in \mathbb{N} \), then \(\text{Adv}^{\text{INM-atk}}_{\mathcal{V}, A}(\cdot) \) is negligible.

Note 7. In the definition above, CIA stands for Chosen Internal Encoding Attack.

Before we put INM into context with ENM, we study a combination of the somewhat homomorphic property (cf. Remark 1) with possible INM adversary’s access to the RO. First, let us formulate a problem to be hard in order to prevent the situation outlined in Remark 2, i.e., distinct multisets of known modified ID’s result in equal control sums.

Problem 29 (Sum of Randoms, SoR). Let \(\lambda \) be a security parameter and \(\nu \) such that \(\text{poly}(\lambda) \ll 2^\nu \ll 2^\lambda \). Given a random oracle \(\text{RO}_\lambda : B \to (R, +) \), \(|R| \geq 2^\lambda \), with answers stored in a vector \(r \), either find an integer vector \(w \neq 0 \) (referred to as the vector solution) such that \(w \cdot r = 0 \) and \(\|w\|_1 < 2^\nu \), or answer that such a vector does not exist. We refer to this problem as the Sum of Randoms, denoted as SoR\(_{\text{RO}_\lambda} \). We say it is intractable if it only has a vector solution with negligible probability or it is computationally infeasible to find a vector solution.

Note 8. In order SoR to be tractable, \(w \) must be of a polynomial dimension. The condition \(\|w\|_1 < 2^\nu \) is present due to the somewhat restriction, cf. Remark 4.

Proposition 30. Let there exist a polynomial \(p \) such that the SoR\(_{\text{RO}_\lambda} \) problem has a non-empty set of vector solutions of dimension at most \(p(\lambda) \), with non-negligible probability. Let further \(S \) be an oracle with access to \(\text{RO}_\lambda \) that either, with non-negligible probability and after at most \(p(\lambda) \) queries to \(\text{RO}_\lambda \), returns a vector solution, or answers \(\perp \). Given an access to \(S \) and \(\text{RO}_\lambda \), no VGIE (even a somewhat homomorphic) can satisfy any kind of WLN\(_M\)- or LCCA2-security.

Proof. Find the proof in Appendix B-E.

Remark 9. Later we suggest a simplification to the VERAGreg scheme which makes the RO available to the adversary, hence—due to Proposition 20—we insist on the assumption of SoR\(_\lambda\) hardness. Below we provide some related thoughts:

- if we omit \(\|w\|_1 < 2^\nu \), we have the following solutions
 \[
 w(k) = (0, \ldots, 0, \frac{r_{k+1}}{\text{GCD}(r_k, r_{k+1})}, \frac{r_k}{\text{GCD}(r_k, r_{k+1})}, \ldots, 0),
 \]
 (16)
which form a basis of a lattice \(W \) where it holds \(w \cdot r = 0 \), \(\forall w \in W \).

- \(W \) is a sublattice of the lattice of all integer solutions to \(w \cdot r = 0 \), however, there is no guarantee that they are equal,

- in modular lattices (typically in \(\mathbb{Z}_p \), \(p \) prime), the problem of finding the shortest vector is believed to be hard on average (aka. the Shortest Vector Problem, SVP).

In the following theorem, we finally put INM and ENM into context. In the subsequent corollary, we also cover the case of a somewhat homomorphic VGIE with an INM adversary with an access to the RO which will later serve as a basis for the simplification to the VERAGreg scheme in Remark 10.
Theorem 31 \((\text{INM-}\text{atk} \Rightarrow \text{ENM-}\text{atk}'\)). Let \(V = (\text{Init}, \text{Grant}, \text{AHE}, \text{RO}, \text{Inc, Add, Idc})\) be a VGIE. If the internal encoding of \(V\) is \(\text{INM-}\text{atk-secure}\), then its encoding is \(\text{ENM-}\text{atk}'\)-secure, for CIA0–CEA0, CIA1–CEA1 and CIA2–CEA2 pairs of \(\text{atk-}\text{atk}'\).

Proof. Find the proof in Appendix B-F.

Corollary 32. Assuming that \text{SoR} is intractable, Theorem 31 holds also for a somewhat homomorphic VGIE where the \text{INM-}\text{atk} adversary has, in addition, an access to the RO.

Proof. Find the proof in Appendix B-G.

Finally, we conjecture that the opposite implication in Theorem 31 holds, too. As a result of previous theorems and conjectures, this leads us to a conjecture on an equivalence of SLNM and INM of a VGIE that employs an IND-CCA1-secure AHE, or, by Corollary 32, under the assumption of \text{SoR} intractability and the somewhat homomorphic property, even if RO is available to the adversary. This equivalence poses the ultimate goal of our decomposition effort – the \text{VERAGREG} security would rely solely on the security of underlying constructs. We summarize our theorems, lemmas and conjectures in Figure 1.

Conjecture 33 \((\text{ENM-}\text{atk}' \Rightarrow \text{INM-}\text{atk})\). If \(\text{Enc}\) of a VGIE is \(\text{ENM-}\text{atk}'\)-secure, then its \(\text{Inc}\) is \(\text{INM-}\text{atk-secure}\) for respective pairs of \(\text{atk-}\text{atk}'\).

Conjecture 34 \((\text{SLNM-}\text{atk} \Leftrightarrow \text{INM-}\text{atk}')\). Let AHE be IND-CCA1-secure. A VGIE using AHE is SLNM-atk-secure if and only if its Inc is INM-atk'-secure for respective pairs of \(\text{atk-}\text{atk}'\).

Fig. 1. A simplified summary of our results. Proven implications are drawn with solid lines, conjectures with dotted lines.

Remark 10. A cryptographic hash function \((\text{CHF})\) or a pseudorandom function \((\text{PRF})\) can be modelled as a random oracle and vice versa, for a comprehensive reading we refer to Canetti et al. [6]. In the definition of the \text{VERAGREG} scheme (Definition 2), we employed a symmetric encryption SE for an unpredictable modification of ID's, cf. (1). Here, SE is instantiated with a secret key, i.e., it is a private PRF which can be modelled as a random oracle that is not available to the adversary. However, with the assumptions of Corollary 32 (the \text{VERAGREG} scheme is indeed somewhat homomorphic), we can provide the random oracle to the adversary, i.e., it can be instantiated as a CHF instead. Hence we suggest

\[
E_{\text{atk}}(b, d) = \text{AHE}((h(b) \cdot m_1 + d) \cdot m_2)
\]

where \(h(\cdot)\) is a CHF. In other cases, a private PRF must be still employed.

VI. CONCLUSION

As the major contribution of this paper, we consider the novel notions of security, in particular the “global” strong list non-malleability—for the abstract \text{VERAGREG} framework—and the “local” internal encoding non-malleability—for the structured \text{VERAGREG} internal encoding framework. Based on our theorems, we conjectured their equivalence under reasonable assumptions on the components of the structured framework.

We defined a novel lattice problem—the Sum of Randoms problem—which is a particular kind of the famous Shortest Vector Problem. Assuming the hardness of \text{SoR}, we achieved the same results for a somewhat homomorphic \text{VERAGREG} scheme even with a stronger attacker, which, in turn, led us to a simplification to the original \text{VERAGREG} scheme.

Future Directions

The conjectures stated in this paper attract our attention: 5 conjectures in total, two of them only as prospective corollaries. Although in some cases they appear to be similar to other proofs, they still resist our effort.

As another research topic, we consider the \text{SoR} problem, in particular due to its relation to the famous Shortest Vector Problem (SVP) in lattice theory.

Finally, we aim to focus on other instantiations of the Inc mapping – at the moment, we employ \(\text{Inc}_{m_1,2}(r, d) = (r \cdot m_1 + d) \cdot m_2\) as introduced in [13]. For any future Inc mapping, we will particularly focus on its prospective INM security as introduced in this paper.

Acknowledge

We would like to thank to Pascal Paillier for a brief yet very useful feedback.

REFERENCES

\textsc{APPENDIX B} \hspace{0.5cm} \textbf{SECURITY REDUCTIONS}

In the following proofs, we omit the negligible term that is present due to undefined behavior of \textsc{VeraGreg} in corner cases, cf. the proof of Theorem \ref{thm:mainResult}.

\section*{A. Proofs of Lemmas}

\begin{lemma}
\label{lem:policyComplianceWitnessing}
Let \((\text{Init}, \text{Grant}, \text{AHE}, \text{Enc}, \text{Add}, \text{Dec})\) be a \textsc{VGE}. Then for any valid set of ID-data pairs \((b, d_b)_{b \in B}\), \(b \subseteq B\), any policy-compliant \(B \in \mathcal{M}(B)|_b\) and a key pair \((pk, sk) \leftarrow \text{Init}\), it holds
\begin{equation}
\text{Dec}_{sk}(B, \sum_{b \in B} \text{Enc}_{sk}(b, d_b)) = \sum_{b \in B} d_b.
\end{equation}
\end{lemma}

\begin{proof}
By Definition \ref{def:VeraGreg} (in Appendix \ref{app:VeraGregFramework}) and Definition \ref{def:veracrytpoints} we have
\begin{align*}
\text{Dec}_{sk}(B, \sum_{b \in B} \text{Enc}_{sk}(b, d_b)) &= \text{Dec}_{sk}(B, \text{AHE}_{pk,sk}(\sum_{b \in B} \text{Enc}_{sk}(b, d_b))) \\
&= \text{Dec}_{sk}(B, \bigoplus_{b \in B} \text{AHE}_{pk,sk}(\text{Enc}_{sk}(b, d_b))) \\
&= \text{Dec}_{sk}(B, \text{Add}_{pk}(B, \text{E}_{sk}(b, d_b)_{b \in B})) = \sum_{b \in B} d_b.
\end{align*}
\end{proof}

\begin{lemma}
\label{lem:maliciousPolicyCompliantWitnessing}
Let \((\text{Init}, \text{Grant}, \text{AHE}, \text{RO}, \text{Inc}, \text{Add}, \text{Idec})\) be a \textsc{VGE}. Then for any valid set of ID-data pairs \((b, d_b)_{b \in B}\), \(b \subseteq B\), \(r_b := \text{RO}(b)\), any \(B \in \mathcal{M}(B)|_b\) and a key pair \((pk, sk) \leftarrow \text{Init}\), it holds
\begin{equation}
\text{Idec}_{sk}(\sum_{b \in B} \text{Inc}_{sk}(r_b, d_b)) = (\sum_{b \in B} r_b, \sum_{b \in B} d_b).
\end{equation}
\end{lemma}

\begin{proof}
By Definition \ref{def:VeraGreg} and Lemma \ref{lem:policyComplianceWitnessing} we have
\begin{align*}
\text{Idec}_{sk}(\sum_{b \in B} \text{Inc}_{sk}(r_b, d_b)) &= \text{Idec}_{sk}(\sum_{b \in B} \text{Enc}_{sk}(b, d_b)) \\
&= (\sum_{b \in B} \text{RO}(b), \text{Dec}_{sk}(B, \sum_{b \in B} \text{Enc}_{sk}(b, d_b))) \\
&= (\sum_{b \in B} r_b, \sum_{b \in B} d_b).
\end{align*}
\end{proof}
B. Proof of Theorem 9

Theorem 9 (SLNM-atk ⇒ WLNM-atk). If a VERA framework \(\mathcal{V} \) resists SLNM in an attack scenario, then it resists WLNM in the same attack scenario.

Proof. In the sense of Remark 4, we show that any successful WLNM attack is also a successful SLNM attack, hence \(\text{Adv}_{\mathcal{V},A}^{\text{WLNM-atk}} \geq \text{Adv}_{\mathcal{V},A}^{\text{SLNM-atk}} \sim \text{negl}(\lambda) \) where \(A \) is a WLNM adversary and the negligible term is present due to undefined behavior of VERA in corner cases. By Definition 2, Note that WLNM only differs from SLNM by the set of rejected vectors, cf. Table 1. The WLNM set of rejected vectors is a superset of that of SLNM, hence it follows that all of the attack vectors accepted in the WLNM experiment are also accepted in the SLNM experiment which concludes the proof. \(\square \)

C. Proof of Theorem 7

Theorem 10 (SLNM-atk ⇒ ENM-atk'). If a VGE is SLNM-atk-secure, then its encoding is ENM-atk'-secure, for CPA-CEA0, CCA1-CEA1 and LCCA2-CEA2 pairs of atk-atk'.

Proof. We show that \(\text{Adv}_{\mathcal{V},A}^{\text{SLNM-atk}} \geq 1/2 \text{Adv}_{\mathcal{V},B}^{\text{ENM-atk}} \) where \(A = (A_1, A_2) \) and \(B = (B_1, B_2) \) is an SLNM-atk and an ENM-atk adversary, respectively, which concludes the proof. The overall idea is that we construct the WLNM-atk adversary \(A \) who, provided an oracle access to the ENM-atk' adversary \(B \), aims to succeed in an SLNM-atk experiment. Note that \(A \) has to provide \(B \) with an access to ENM-atk' oracles denoted by \(\mathcal{E}_B \) and \(D_B^{(e)} \) while she has an access to SLNM-atk oracles denoted by \(\mathcal{E}_A \) and \(D_A^{(e)} \) where \(D_A^{(e)} \) stands for \(D_X \) and \(D_A \), respectively. See Figure 2 for reference. Finally we show that in a half of cases, \(A \) succeeds if \(B \) succeeds (following Remark 4).

First, let us describe the simulated oracles \(\mathcal{E}_B \) and \(D_B^{(e)} \) that employ the oracles \(\mathcal{E}_A \) and \(D_A^{(e)} \), respectively, and share a database \(DB \) of ID-ciphertext pairs. Note that \(\mathcal{E}_B \) and \(D_B^{(e)} \) are constructed to allow for modification of the plain data in order to succeed in particular cases that will be explained later. Nevertheless, the output \(b \) is not affected by this change since the Grant algorithm is required to output \(b \) that is independent of the input data.

1: function \(\mathcal{E}_B^{(e)}(d) \)
2: \((b, c_0) \leftarrow \mathcal{E}_A(d + p) \)
3: \(DB(b) \leftarrow c_0 \)
4: return \(b \)

1: function \(D_B^{(e)}(B, B_S, c) \)
2: if \(\exists b \in B_S, b \notin DB \) then return \(\bot \)
3: for \(b \in B_S \) do
4: \(c_b \leftarrow DB(b) \)
5: return \(d \leftarrow D_B^{(e)}(B, \bigoplus_{b \in B_S} c_b \oplus \text{AHE}(c)) - p \cdot |B_S| \)

Next, we describe the SLNM-atk adversary \(A \). Note that \(B \) is provided with an access to the oracles \(\mathcal{E}_B \) and \(D_B^{(e)} \).

1: function \(A_1^{\mathcal{E}, D_A}(pk) \)

Let us inspect the key condition of SLNM (line 7) in Definition 8 and that of ENM (line 7 in Definition 15) for \(p = 0 \) (the case \(p = 1 \) will be resolved later):

\[\forall i \in \hat{N} : (B^{(i)}, c^{(i)}) \notin TB(b^*, e^*) \land \bot \notin d \land R(d_q, d), \] and

\[\forall i \in \hat{N} : (e^{(i)} \neq 0 \lor B^{(i)} \neq B^{(i)}_2) \land \bot \notin d \land R(d_q, d), \] (ENM)

respectively. Let us focus on their relation in the scenario of this proof. By the construction of \(A_2 \), it holds \(N_{\text{SLNM}} = N_{\text{ENM}} \) and \(B_{\text{SLNM}} = B_{\text{ENM}} \). In particular, \(d_q \) is common for both experiments, let us show that also \(d_{\text{SLNM}} = d_{\text{ENM}} \). We show that element-wise and omit indexes \(i \):

\[d_{\text{SLNM}} = D_d(B, C) = \text{Dec}_{sk}(B, \text{AHE}^{-1}(c)) = \] \(= \text{Dec}_{sk}(B, \text{AHE}^{-1}(\bigoplus_{b \in B_S} c_b \oplus \text{AHE}(e))) = \] \(= \text{Dec}_{sk}(B, \sum_{b \in B_S} \text{AHE}^{-1}(\mathcal{E}_d(b, d_b)) + e) = \] \(= \text{Dec}_{sk}(B, \sum_{b \in B_S} \text{Enc}_{sk}(b, d_b) + e) = \) \(= \text{Dec}_{sk}(B, \sum_{b \in B_S} e_b + e) = d_{\text{ENM}} \) where \(d_b \) is a piece of data relative to \(b \). The equations hold subsequently by:

1) line 6 in experiment \(\text{Exp}_{\mathcal{V},A}^{\text{SLNM-atk-q}} \) in Definition 8
2) \(D_d \) in Definition 11
3) line 4 in adversary \(A_2 \),
4) oracles \(\mathcal{E}_B \) and \(B, \) respectively, and the AHE homomorphic property,
5) \(E_d \) in Definition 11
6) encoding oracle \(\mathcal{E} \) in Definition 15 and
7) line 6 in experiment \(\text{Exp}_{\mathcal{V},B}^{\text{ENM-atk-q}} \) in Definition 15

The difference between (SLNM) and (ENM) hence remains in the conditions

\[(B, C) \notin TB(b^*, e^*), \] and

\[e \neq 0 \lor B \neq B_S. \] (25)

Aiming to show \(\text{Adv}_{\mathcal{V},A}^{\text{SLNM-atk}} \geq 1/2 \text{Adv}_{\mathcal{V},B}^{\text{ENM-atk}} \) (the coefficient \(1/2 \) will be resolved later) and following the ideas

\[\hat{N} \]

We will distinguish the variables from Equations (SLNM) and (ENM) by a subscript.
identified in Remark 4, we only need to discuss the case when a non-trivial ENM breach results in a trivial SLNM breach, i.e., when (24) does not hold while (25) holds. For the ciphertext part at the output of A_2, it holds by (4) in Definition 7 that it equals to a plain sum of ciphertexts

$$\sum_{b \in B_2} c_b \oplus \text{AHE}(e) = \sum_{b \in B} c_b = e$$ \hspace{1cm} (26)

In order (25) to hold, it must be $B \neq B_2$, and e encodes actual values. We distinguish two cases based on the presence of b^* in $B \setminus B_2$.

Case $b^* \in B \setminus B_2$. By (27), e shall encode a portion of the absolutely unknown challenge data d_1. Indeed, B only learns b^* which is independent of actual d_1. It follows that such a case may happen only accidentally, hence, by Remark 4, this is an uncontrolled type of attack which results in $\text{Adv}_{\text{ENM-atk}} = 0$.

Case $b^* \in B \setminus B_2$. Here, e only encodes known values and poses a non-trivial valid ENM attack. However, it cannot be directly used for SLNM since it results in a trivial attack. Here comes the option $p = 1$. The idea is as follows: since B does not have any information about what data has been indeed encrypted, A can modify it before submitting it to the encryption oracle \mathcal{E}_A in the construction of \mathcal{E}_B oracle. When the attack is evaluated, trivial breaches are considered with respect to the modified data (i.e., $d + 1$), however, B returns e that encodes the original data, i.e., the difference emerges in $B \setminus B_2$. It follows that after respective modification, the relation B holds for the modified data while posing a non-trivial SLNM attack.

Since A_1 begins with a “coin toss” (line 2 in A_1 in this proof), the success of each branch halves, no matter which case of B_2 output occurs, hence $\text{Adv}_{\text{SLNM-atk}} \geq 1/2 \text{Adv}_{\text{ENM-atk}}$. □

D. Proof of Theorem 18

The proof follows an idea and language similar to the proof of Theorem 16 in Section B.C. In particular cf. Figure 2 since an analogous figure is omitted here.

Theorem 18 (ENM-atk’ ⇒ SLNM-atk_{AHE'}). Let a VGE V use the perfect AHE. If its encoding is ENM-atk'-secure, then it is SLNM-atk'-secure for CEA0–CPA, CEA1–CCA1 and CEA2–LCCA2 pairs of atk’–atk.

Proof. We show that $\text{Adv}_{\text{ENM-atk'}}^V \geq \text{Adv}_{\text{SLNM-atk'(AHE')}}^V$, where $B = (B_1, B_2)$ and $A = (A_1, A_2)$ is an ENM-atk’ and an SLNM-atk_{AHE'} adversary, respectively, which concludes the proof. We construct the ENM-atk’ adversary B who, provided an oracle access to the SLNM-atk_{AHE'} adversary A, aims to succeed in an ENM-atk’ experiment. Note that B has to provide A with an access to SLNM-atk oracles denoted by \mathcal{E}_A and $\mathcal{D}_B^{(s)}$, and to an AHE* encryption oracle $\mathcal{E}_{\text{AHE'}}$; while she has an access to ENM-atk’ oracles denoted by \mathcal{E}_B and $\mathcal{D}_B^{(s)}$ where $\mathcal{D}_X^{(s)}$ stands for \mathcal{D}_X and \mathcal{D}_X^{*}, respectively. Finally we show that B succeeds if A succeeds.

First, we describe the oracles \mathcal{E}_A and $\mathcal{D}_B^{(s)}$, that employ the SLNM-atk’ oracles denoted by \mathcal{E}_B and $\mathcal{D}_B^{(s)}$, respectively, together with the $\mathcal{E}_{\text{AHE'}}$ oracle. All oracles share a database DB that implements two kinds of AHE*: an internal AHE* that serves for data encryption in \mathcal{E}_A and an instance that encrypts encodings inside $\mathcal{E}_{\text{AHE'}}$. Note that these instances are distinguished in DB by 0 and 1, respectively.

1: function $\mathcal{E}_A(d)$
2: \begin{align*}
 & b \leftarrow \mathcal{E}_B(d); \ c \leftarrow \{0, 1\}^\lambda \\
 & DB(c) \leftarrow (b, 0) \\
 & \text{return} \ (b; \{c\})
\end{align*}

3: function $\mathcal{E}_{\text{AHE'}}(e)$
4: \begin{align*}
 & c \leftarrow \{0, 1\}^\lambda \\
 & DB(c) \leftarrow (e, 1) \\
 & \text{return} \ \{c\}
\end{align*}

5: function $\mathcal{D}_B^{(s)}(B; C)$
6: \begin{align*}
 & \text{if } \exists c \in C, c \notin DB \text{ then return } \perp \\
 & (B_{\Sigma_2}; (e_j, n_j)_{j=1}^n) \leftarrow \text{decompose } C \text{ and look up in } DB \\
 & \text{employ the 0 or 1 marker}
\end{align*}

7: function $\mathcal{D}_B^{(s)}(B, B_2; \sum_{j=1}^n n_j \cdot e_j)$
8: \begin{align*}
 & d \leftarrow \mathcal{D}_B^{(s)}(B, B_2; \sum_{j=1}^n n_j \cdot e_j) \\
 & d_{\Sigma_2} \leftarrow \mathcal{D}_B^{(s)}(B_2; \sum_{j=1}^n n_j \cdot e_j)
\end{align*}

Next, we describe the ENM-atk’ adversary B who provides A with an access to the oracles \mathcal{E}_A, $\mathcal{E}_{\text{AHE'}}$ and $\mathcal{D}_A^{(s)}$.

1: function $\mathcal{B}_1^{\mathcal{E}_B, DB}(pk)$
2: \begin{align*}
 & \text{init an empty } DB \\
 & (M, s) \leftarrow A_1^{\mathcal{E}_A, DB}(pk) \\
 & \text{return} \ ((M, DB), s)
\end{align*}

3: function $\mathcal{B}_2^{\mathcal{E}_B, DB}(pk)$
4: \begin{align*}
 & \text{return} \ ((M, DB), s, b^*)
\end{align*}
2: $c^* \leftarrow \{0, 1\}^\lambda$
3: $DB(c^*) \leftarrow (b^*, 0)$
4: $(R, (B^{(i)}(c^*)|_{i=1}^N)) \leftarrow A_{ENM}^{\lambda}, \mathcal{E}_{\text{HE}}^{\lambda}, \mathcal{D}_{\lambda}^{\lambda}(M, s, (b^*, \{c^*\}))$
5: for $i = 1 \ldots N$ do
6: if $\exists c \in C^{(i)}, c \not\in DB$ then return $(R, (\emptyset, 0)|_{i=1}^N)$ // something trivial
7: $(B^{(i)}_2^{(i)}, (e^{(i)}_j, n^{(i)}_j|_{j=1}^N)) \leftarrow \text{decompose } C^{(i)}$
8: and look up in DB
9: $e^{(i)} \leftarrow \sum_{j=1}^n n^{(i)}_j e^{(i)}_j$
10: return $(R, (B^{(i)}_2^{(i)}, e^{(i)}_j|_{j=1}^N)$

The conditions of ENM (line 7) in Definition 15 and $SLNM$ (line 7) in Definition 8 state:

\[
\forall i \in \tilde{N}: (e^{(i)} \neq 0 \lor B^{(i)} \neq B^{(i)}_2) \land \perp \notin d \land R(d_q, d), \text{ and (ENM)}
\]

\[
\forall i \in \tilde{N}: (B^{(i)}, C^{(i)}) \notin TB(b^*, \{c^*\}) \land \perp \notin d \land R(d_q, d), \text{ and (SLNM)}
\]

respectively. By the construction of B_2, it holds $N_{ENM} = N_{SLNM}$ and $B^{(i)}_2 = B^{(i)}_2$. In particular, d_q is common for both experiments, let us show that also $d_{ENM} = d_{SLNM}$. We show that element-wise and omit indexes $^{(i)}$:

\[
d_{ENM} = \text{Dec}_{sk}(B, \sum_{b \in B_2} e_b + e) = \text{Dec}_{sk}(B, \sum_{b \in B_2} e_b + \sum_{j=1}^n n_j \cdot e_j) = \text{Dec}_{sk}(B, AHE^{-1}(C)) = D_{sk}(B, C) = d_{SLNM}.
\]

The equations hold subsequently by:

1. line 6 in experiment $\text{Exp}_{\lambda}^{\text{ENM-atk-}}$ (in Definition 15).
2. adversary B_2 from this proof (line 8).
3. decomposition of C in adversary B_2 (line 7).
4. D_{sk} in Definition 11 and
5. line 6 in experiment $\text{Exp}_{\lambda}^{\text{SLNM-atk-}}$ (in Definition 8).

The difference between ENM and $SLNM$ hence remains in the conditions

\[
e \neq 0 \lor B \neq B_2, \text{ and (28)}
\]

\[
(B, C) \not\in TB(b^*, \{c^*\}). \text{ (29)}
\]

Aiming to show $\text{Adv}^{\text{ENM-atk}}_{\lambda, B} \geq \text{Adv}^{\text{SLNM-atk}(AHE^{*})}_{\lambda, B}$ and following Remark 4 we only need to discuss the case when a non-trivial SLNM breach results in a trivial ENM breach, i.e., when (28) does not hold while (29) holds. In such a case, both $e = 0$ and $B = B_2$, hence the only option for $(B, C) \notin TB(b^*, \{c^*\})$ is that $b^* \not\in B$, cf. (5) in Definition 7. However, such an SLNM breach is not related to the challenge data d_1 at all, hence contributes by zero to the SLNM advantage. $\text{Adv}^{\text{ENM-atk}}_{\lambda, B} \geq \text{Adv}^{\text{SLNM-atk}(AHE^{*})}_{\lambda, B}$ follows. \[\square\]

E. Proof of Proposition 30

Proposition 30 Let there exist a polynomial p such that the SoRO_λ problem has a non-empty set of vector solutions of dimension at most $p(\lambda)$, with non-negligible probability. Let further S be an oracle with an access to RO_λ that either, with non-negligible probability and after at most $p(\lambda)$ queries to RO_λ, returns a vector solution, or answers \perp. Given an access to S and RO_λ, no VIE (even a somewhat homomorphic) can satisfy any kind of WLNM- or LCCA2-security.

Proof. Let $(\text{Init}, \text{Grant}, \text{AHE}, \text{RO}_\lambda, \text{Inc}, \text{Add}, \text{Idc})$ be a VIE and Exp a WLNM- or LCCA2-type experiment. Since we do not control the granting algorithm, we cannot provide S with a direct access to RO_λ. Instead, with each query b_S of S, we either look it up in our database (in case it has already been asked), or query the E oracle in Exp on, e.g., $d = 0$, to obtain fresh b, reply with $r \leftarrow \text{RO}_\lambda(b)$ and store (b_S, r) in the database. Note that due to the uniformly random nature of the random oracle, this setup is equivalent to the case where S has a direct access to RO_λ, up to a polynomial slowdown.

With non-negligible probability and after at most $p(\lambda)$ queries, S returns a vector solution w, clearly $\text{dim } w \leq p(\lambda)$. Note that for such w, it occurs $w[b^*] \neq 0$ with at least $1/p(\lambda)$ probability which keeps the overall probability non-negligible. It follows that with non-negligible probability, we can exploit w to replace the challenge ID b^* in the list B and answer trivially what we are supposed to; cf. the idea of the proof of Proposition 5. \[\square\]

F. Proof of Theorem 31

The proof follows an idea and language similar to the proof of Theorem 16 in Section B-C. In particular cf. Figure 2 since an analogous figure is omitted here.

Theorem 31 ($\text{INM-atk} \Rightarrow \text{ENM-atk}^\prime$). Let $\mathcal{V} = (\text{Init}, \text{Grant}, \text{AHE}, \text{RO}_\lambda, \text{Inc}, \text{Add}, \text{Idc})$ be a VIE. If the internal encoding of \mathcal{V} is INM-secure, then its encoding is ENM-atk-secure, for $\text{CIA0-CEA0}, \text{CIA1-CEA1}$ and CIA2-CEA2 pairs of atk-atk.

Proof. We show that $\text{Adv}^{\text{INM-atk}}_{\lambda, B} \geq \text{Adv}^{\text{ENM-atk}}_{\lambda, B} - \text{negl}(\lambda)$, where $C = (C_1, C_2)$ and $B = (B_1, B_2)$ is an INM-atk and an ENM-atk’ adversary, respectively, which concludes the proof. We construct the INM-atk adversary C who, provided an oracle access to the ENM-atk’ adversary B, aims to succeed in an INM-atk experiment. Note that C has to provide B with an access to ENM-atk’ oracles denoted by E_B and $D_B^{(s)}$ while she has an access to INM-atk oracles denoted by E_C and $D_C^{(s)}$ where $D_C^{(s)}$ stands for D_C and D_C, respectively. Finally we show that C succeeds if B succeeds.

First, we describe the oracles E_C and $D_C^{(s)}$, that employ the oracles E_C and $D_C^{(s)}$, respectively.

1: function $E_B(d)$
2: return $b \leftarrow E_C(d)$
3: function $D_B^{(s)}(B, B_2, e)$
4: if $D_C^{(s)}(B_2, e) = \perp$ then return \perp
3: \((r, d) \leftarrow D_f^{B_2}(B_2, e)\)
4: \(\text{if } r \neq \sum_{b \in B} RO(b) \text{ then return } \perp\)
5: \(\text{return } d\)

Next, we describe the \(\text{INM-\text{atk}}\) adversary \(C\) who provides \(B\) with an access to the oracles \(\mathcal{E}_B\) and \(\mathcal{D}_B\).

1: \(\text{function } C_{\mathcal{E}_B, \mathcal{D}_B}(pk)\)
2: \((M, s) \leftarrow B_{\mathcal{E}_B, \mathcal{D}_B}(pk)\)
3: \(\text{return } (M, s)\)

1: \(\text{function } C_{\mathcal{E}_B, \mathcal{D}_B}^\dagger(M, s, b^*)\)
2: \((R, (B^{(i)}, B^{(i)}, e^{(i)}))_{i=1}^N \leftarrow B_{\mathcal{E}_B, \mathcal{D}_B}(M, s, b^*)\)
3: \(\text{return } (R, (B^{(i)}, e^{(i)}))_{i=1}^N\)

The conditions of \(\text{INM}\) (line 7 in Definition 28) and \(\text{ENM}\) (line 7 in Definition 15) state:

\[
\forall i \in \hat{N}: e^{(i)} \neq 0 \land \not\in (r, d) \land R(d, d), \quad (\text{INM})
\]

\[
\forall i \in \hat{N}: (e^{(i)} \neq 0 \lor B^{(i)} \neq B^{(i)} \land \not\in d) \land R(d, d), \quad (\text{ENM})
\]

respectively. By the construction of \(C_2\), it holds \(N_{\text{INM}} = N_{\text{ENM}}\) and \(\mathcal{B}_{\text{INM}} = \mathcal{B}_{\text{ENM}}\). In particular, \(d_{\text{ENM}}\) is common for both experiments, let us show that also \(d_{\text{INM}} = d_{\text{ENM}}\). We show that element-wise and omit indexes \((i)\):

\[
d_{\text{INM}} = \text{Idc}_{\mathcal{E}}(\sum_{b \in B_2} e_b + e)[1] = \text{Dec}_{\mathcal{E}_B}(B, \sum_{b \in B_2} e_b + e) = d_{\text{ENM}}.
\]

The equations follow from line 6 in experiment \(\text{Exp}_{INM-q}\) (in Definition 28), \(\text{Dec}_{\mathcal{E}}\) in Definition 25 and line 6 in experiment \(\text{Exp}_{\mathcal{V}, B}\) (in Definition 15), respectively. The difference between \(\text{INM}\) and \(\text{ENM}\) hence remains in the conditions

\[
eq 0, \quad (30)
\]

\[
eq 0 \lor B \neq B_2. \quad (31)
\]

Aiming to show \(\text{Adv}_{\mathcal{V}, C}^{\text{INM-\text{atk}}}(\lambda) \geq \text{Adv}_{\mathcal{V}, B}^{\text{ENM-\text{atk}}}(\lambda) - \text{negl}(\lambda)\) (the negligible term \(\text{negl}(\lambda)\) will be resolved later) and following Remark 4, we only need to discuss the case when a non-trivial \(\text{ENM}\) breach results in a trivial \(\text{INM}\) breach, i.e., when (30) does not hold while (31) holds. In such a case when \(e = 0\) while \(B \neq B_2\), it holds by line 5 in Definition 25, line 6 in Definition 15 and (23) in Lemma 25 that

\[
r = \sum_{b \in B} RO(b) = \sum_{b \in B_2} RO(b). \quad (32)
\]

Since the terms \(RO(b)\) are random and unknown to \(B\), this may happen only with negligible probability. It follows \(\text{Adv}_{\mathcal{V}, C}^{\text{INM-\text{atk}}}(\lambda) \geq \text{Adv}_{\mathcal{V}, B}^{\text{ENM-\text{atk}}}(\lambda) - \text{negl}(\lambda)\) which concludes the proof.

\[\square\]

G. Proof of Corollary 32

Corollary 32 Assuming that \(\text{SoR}\) is intractable, Theorem 31 holds also for a somewhat homomorphic V\(G\)\(I\)\(E\) where the \(\text{INM-\text{atk}}\) adversary has, in addition, an access to the RO.

Proof. Following the proof of Theorem 31, the difference occurs at the very end where we argue that the terms \(RO(b)\) are unknown to the adversary – in this case, we assume that these terms are known to the adversary. Hence, the (too large) solution \(w^{(k)} = (0, \ldots, 0, \sum_{i=1}^k \Delta C D(r_{k+1}, r_{k+1}), - \sum_{i=1}^k \Delta C D(r_k, r_{k+1}), 0, \ldots, 0)\) to the \(\text{SoR}\) problem identified in Remark 9 would work in a V\(G\)\(I\)\(E\) without a restriction. However and for this particular reason, we assumed a somewhat homomorphic V\(G\)\(I\)\(E\) which restricts the \(\text{SoR}\) solutions by \(\|w\|_1 < 2^\nu\). It follows that if (32) is satisfied for a valid \(\text{VERA}\)\(G\)\(R\) list-ciphertext pair, it must be the case that the vector representation of \(B \setminus B_2\) represents a vector solution to the \(\text{SoR}\) problem which we assumed to be intractable.

It follows \(\text{Adv}_{\mathcal{V}, C}^{\text{INM-\text{atk}}}(\lambda) \geq \text{Adv}_{\mathcal{V}, B}^{\text{ENM-\text{atk}}}(\lambda) - \text{negl}(\lambda)\) which concludes the proof.

\[\square\]