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Abstract We present a process that optimizes a sub-block of a parametric design
which is strongly dependent on another, dominating, sub-block. The optimiza-
tion is done by genetic algorithm, which in turn uses a dynamic programming
approach to evaluate tentative designs. We demonstrate that problem-specific
proofs can dramatically reduce the search space.

1 Introduction

The problem presented here surfaced during the design of finite field arithmetic unit (AU) for
a comparison study [1], which discussed trade-offs in hardware for Elliptic Curve Cryptog-
raphy [4]. The unit used normal basis representation. Therefore, the inversion algorithm of
Itoh, Teechaji, and Tsujii (ITT) [3] was chosen, based on repeated multiplication and squar-
ing. In normal basis representation, squaring is realized as rotation (circular shift). Series
of squarings of varying length are required, which can be implemented as shorter series of
longer rotations. The arithmetic unit then comprises a multiplier and a shifter.

To achieve fair comparison in the cited study, the arithmetic unit had to be scalable. As
area and performance were the main measures, we needed to adjust the area of the AU to
obtain given performance and vice versa.

Besides this motivation, we also considered system optimization scenarios as in [2],
where the top-level optimization process works on a set of blocks with parametric perfor-
mance and (in that case) power consumption.

Our AU design (Figure 1) is dominated by the multiplier in both area and time. We choose
the design of the multiplier to be theprimary task and the design of the shifter as adependent
task, that is, we optimize it in the context of the dominating block. Our aim is to develop a
procedure where the digit width of the multiplier controls the design of the entire AU.

Surprisingly, the problem of optimum shifter design exhibits a rich structure and a com-
plex solution space. Although the solution presented here is heuristic, proving some problem-
specific theorems played a role in decomposition of the problem.

We tried to solve the task by behavioral synthesis software; however, we never persuaded
the synthesizers to decompose the rotations in time and space as described below.
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Figure 1: Finite field arithmetic unit

2 Problem Formulation

Let m be the degree of the finite field we work in,GF (2m). The ITT inversion algorithm
calls for r distinct rotations, wherer = blog2 mc − 1. The smallest rotation is always 1,
the biggest one approximatelym/2. Each of the rotations is performed exactly once in an
inversion operation.

The task is to synthesize a shifter which implements all rotations and which,when com-
bined with the rest of the AU, gives optimum performance/area ratio.

Two dependencies between the designs of the shifter and the multiplier exist. Firstly, the
ratio of the shifter’s area and time must be ’the right one’. Secondly, a long critical path the
shifter may slow down the AU clock.

3 Approach Overview

To scale the shifter, we first find a limited set of rotations to be implemented in hardware and
their combinations which realize the given set of rotations. This is thetime domain subprob-
lem. Then, we construct the hardware – thespace domain subproblem. We approximate the
hardware as ann-input multiplexer.

An iterative process (a genetic algorithm in this case) choses a set of rotations. Then,
a dynamic programming procedure finds the number of clock cycles required for the whole
computation inO(m2 logm) time, which is fast enough given the range ofm. The rotations
compose modulom, which makes many more rotation sets feasible.

Finally, the area and critical path length of the shifter are estimated, giving the value of
the optimization criterion of the iterative process.

3.1 Sub-optimum Rotation Set by a Genetic Algorithm

In the time-domain problem, we seekn ≤ r hardware-implemented rotations. A configura-
tion is given byn values in the range(0,m). This is the phenotype of the genetic algorithm.
The genotype (chromosome) is a fixed structure with a simple decoder. Constrained opti-
mization is implemented using a penalty for each rotationki which the individual in question
cannot realize.



Table 1: Shifters Adjusted to Different Multipliers

Multiplier Shifter

digit width area clock cycles area clock cycles rotations

- 0 0 976 10 1,5,20,81

1 489 1956 244 159 1

6 2934 326 488 24 1,10

The rest of the genetic algorithm is quite classical, with single-point crossover and linear
scaling of fitness values. The adaptive nature of linear scaling causes the convergence to
remain unchanged even in the presence of large area and time of the multiplier, where the
difference in evaluations are relatively small.

3.2 Sub-optimal Rotation Set by a Fast Heuristic

Based on observation of the genetic algorithm result, we designed a much faster heuristic
procedure for finding the rotation set:

1 Findnmax such that the critical path length ofnmax-input multiplexer is not bigger than
that of the multiplier.

2 Fori = 1 . . . nmax do:
2.1 Implement rotation by 1.
2.2 If i < r/2, implement everydi/re-th rotation.
2.3 If there are still less thani implemented rotations, pick the rest at random.
2.4 Obtain the number of clock cycles by dynamic programming
2.5 Compute the quality measure and record.

3 Choose the best solution.
The random assignment in Step 2.3 is justified by the fact that using more distinct rota-
tions thanr/2 does not bring much improvement. The complexity of this algorithm is
O(m2 log2 m).

4 Results

The optimizer was implemented using the GAlib C++ library [5]. A number of experiments
has been performed, withm in range interesting for elliptic curve cryptography, that is,
from 160 to 250. The following facts were observed for the procedure using genetic al-
gorithm:

1 The algorithm found an optimum solution where known.
2 Any realized rotation in an optimum solution was identical to some given rotation,

although even slightly sub-optimum solutions did not have this property.
3 No optimum and only a few of sub-optimum solutions employed the modularity of

rotation composition.
4 When the modularity was not used, the search space became disconnected, and more

time was needed to achieve equivalent results.
5 All optimum solutions were best implemented by a multiplexer.



6 With population size of 100, the algorithm required circa 3000 generations to converge
atm = 160, rising to 4000 atm = 250.

Table 1 illustrates the influence of the multiplier size on the shifter. The results were obtained
for m = 163, where the required set of rotations is{1, 2, 5, 10, 20, 40, 81}. The area of an
n-input multiplexer was1.5n and the critical path of the unit was outside the shifter.

The procedure using the fast heuristics gave results almost identical to the other for ‘nor-
mal’ cases, i.e. forn ≤ 3. Beyond that, the results were worse, in average by 15%.

5 Future Work

The biggest challenge for the future is certainly Observation 2. If this held in general, the
search space of the problem would be drastically reduced. If not, an almost obvious experi-
ment to perform is toencouragethe genetic algorithm to produce solutions for which better
implementations than multiplexers exist.

A weaker assertion that might be eventually proven is Observation 3, however, it does not
benefit the solution immediately (cf. Observation 4).

6 Conclusion

We have presented a process, which optimizes a block in the context of another, dominating
block with strong interdependences in area and time of computation.

We decomposed the problem into time- and space-domain subproblems. A part of the
time-domain problem is solved exactly and repeatedly inside the genetic algorithm. The
solution of the space-domain subproblem was approximated and the approximation verified.

The results show that formally proving certain properties of the circuit can dramatically
reduce the search space. Such proofs, although problem-dependent and hard to construct,
could improve the performance of EDA software.
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