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Petr Socha , Vojtěch Miškovský and Martin Novotný *

Department of Digital Design, Faculty of Information Technology, Czech Technical University in Prague,
160 00 Prague, Czech Republic
* Correspondence: martin.novotny@fit.cvut.cz

Abstract: Side-channel analysis has become a widely recognized threat to the security of crypto-
graphic implementations. Different side-channel attacks, as well as countermeasures, have been
proposed in the literature. Such attacks pose a severe threat to both hardware and software cryp-
tographic implementations, especially in the IoT environment where the attacker may easily gain
physical access to a device, leaving it vulnerable to tampering. In this paper, we provide a com-
prehensive survey regarding the non-invasive passive side-channel analysis. We describe both
non-profiled and profiled attacks, related security metrics, countermeasures against such attacks,
and leakage-assessment methodologies, as available in the literature of more than twenty years
of research.

Keywords: side-channel analysis; side-channel attacks; side-channel countermeasures; embedded
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1. Introduction

In the past few decades, computer systems and communication networks have become
an essential part of our everyday lives. Various computing devices are used not only as
tools for many professionals, but also for entertainment. These devices include embedded
devices, such as payment cards, biometric passports, smart cars, trains, or whole cities,
and even medical devices like pacemakers. Being surrounded by devices connected to the
Internet, our private lives are endangered more than ever [1].

Special attention must therefore be given to ensure security of computer systems and
their users. Various measures are employed to achieve confidentiality, integrity, availability,
and non-repudiation of data with efficiency, ease of use, and cost in mind. Nowadays,
widely used algorithms, such as Rijndael/AES [2,3] or RSA [4], are considered secure
from the cryptoanalytic point of view. However, their implementations may leak sensitive
information through the cryptographic device’s side channels, potentially compromising
the entire system.

Side-channel attacks exploit the data-dependent side channels, such as power con-
sumption of the cryptographic device [5,6] or its electromagnetic radiation [7], in order to
extract secret information such as cipher keys. Such attacks pose a severe threat to both
hardware and software cryptographic implementations, especially in the IoT environment
where the attacker may easily gain physical access to a device, leaving it vulnerable to
tampering. Various countermeasures have been proposed to prevent such attacks. Masking
is a widely used technique based on randomization of the processed data [8–11], making it
difficult to exploit the leakage. Hiding is another common approach, which aims to conceal
the exploitable leakage in either side-channel signal amplitude or time [12–15]. Recent
real-world attack examples show that uncompromising protection and testing of embedded
cryptographic implementations is necessary [16].

This paper presents theoretical background and the state of the art in the area of
non-invasive passive side-channel attacks. We map the history of this field and provide
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both a theoretical and practical overview. We present a systematic classification of both
side-channel attacks and side-channel countermeasures and describe these. Therefore, our
publication can serve as a good starting point for new side-channel researchers, as well as
a universal reference. It is structured into seven sections as follows:

• Section 2, Side-Channel Security: Introduces side-channel leakage origin, measure-
ment setup, formal model of the leakage, and leakage functions.

• Section 3, Non-Profiled Attacks: Describes non-invasive passive non-profiled attacks.
• Section 4, Profiled Attacks: Describes non-invasive passive profiled attacks.
• Section 5, Side-Channel Related Metrics: Describes both experimental and theoretical

attack-related metrics.
• Section 6, Countermeasures Against Attacks: Describes hiding and masking countermeasures.
• Section 7, Attacks on Protected Implementations: Describes extensions of the presented

attacks for attacking implementations with countermeasures.
• Section 8, Leakage Assessment: Describes methods for evaluations of side-channel leakage.

2. Side-Channel Security

Side channels of digital systems that may be used to compromise the system in-
clude power consumption [6,17–19], electromagnetic radiation [7], combinational logic
delay [20,21], timing [5], and more. Some of these side channels are mutually dependent.
For example, the relationship between current intensity and the magnetic field can be
shown, e.g., by Biot–Savart law [22], and the combinational logic delay can be convincingly
modeled as inversely proportional to the voltage drop [23]. This paper focuses on the
dynamic power consumption side channel, but our presented concepts may be relevant for
other side channels as well.

Side-channel attacks may be classified in many different ways [22], such as invasive/
non-invasive or active/passive. Invasive attacks require depackaging the chip in order to
access internal components, such as data buses, whereas non-invasive attacks only exploit
the external access. Active attacks tamper with proper functionality of the device (e.g., by
introducing faults), whereas passive attacks only make use of observation of the device
during its undisturbed operation. This paper focuses on non-invasive passive attacks only.

Side-channel attacks can also be classified as either horizontal or vertical. Horizontal
attacks exploit leakage during a single algorithm execution, whereas vertical attacks exploit
leakage from multiple executions. For example, considering a hardware implementation of
the RSA algorithm that uses naïve square and multiply exponentiation, either only square
operations are performed, or both square and multiply operations are performed during
computation, for every exponent bit, depending on the bit being zero or one. This not only
influences execution time, but, in some cases, it also allows the attacker to directly read
the secret key from a single measured power/EM trace by graphing the trace, as the two
operations form distinctive patterns [5]. This kind of a horizontal side-channel attack is
called simple power analysis. Unlike this simple example, this paper focuses on vertical
side-channel attacks, where the information is typically contained in the instantaneous
signal amplitude as further described below.

A CMOS inverter model is depicted in Figure 1. Three different dissipation sources
can be observed in such a CMOS structure [24]:

• static leakage current,
• short-circuit current, and
• capacitance charge and discharge.
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Figure 1. A CMOS inverter model.

When the inverter input presents a stable voltage corresponding to 0 or 1, one of the
transistors is open and the other one is closed. In this case, only static leakage current is
present. When the input changes, short-circuit current can be observed for a brief period of
time when both transistors are open. Furthermore, the modeled load capacitance CL has to
be charged to the proper voltage when the input changes its value. Therefore, based on
the instantaneous current consumption, it can be easily distinguished whether a transition
happened or not. This fact is exploited by the most common leakage models as described
later in this section. The consumption during a transition is demonstrated in Figure 2.

Figure 2. A CMOS inverter current consumption. The yellow line is the inverter input, the green line
is the inverter output. The pink line is the current consumption, where peaks during the transition
are clearly observable.

Because the P-channel MOSFET majority carriers have lower mobility and the minority
carriers have lower lifetime, in contrast to the N-channel MOSFET [25,26], the P-channel
MOSFET is typically built larger than the N-channel MOSFET [25], resulting in different
characteristics, most importantly on-resistance and propagation delay (for non-inverter
gates) [27]. Due to differences between N-channel and P-channel MOSFETs, the output
value after transition can also be distinguished by the instantaneous current [28].

This simple example illustrates data dependency of the instantaneous power con-
sumption, which is the main cause of the power-related side-channel information leakage
in CMOS-based integrated circuits. Vertical attacks exploiting this kind of leakage typically
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require multiple side-channel measurements, unlike the previously described simple power
analysis attack.

2.1. Measurements

The device’s side channel is typically observed during a cryptographic operation,
resulting in a measurement record, so-called trace, i.e., a vector of samples. For example,
a single trace of dynamic power consumption during Rijndael/AES encryption in an FPGA
is visualized in Figure 3. As mentioned earlier, multiple aligned traces, such as this one, are
typically required for a successful attack, although single-trace attacks are sometimes also
possible. This subsection briefly describes different measurement methods.

Figure 3. Rijndael/AES encryption FPGA power trace.

2.1.1. Power Consumption

Power consumption of the cryptographic device is typically measured by using an
oscilloscope which samples voltage across a shunt resistor. The current can then be obtained,
knowing both resistance and voltage, by using Ohm’s law I = U

R . However, raw ADC
values corresponding to the voltage can be directly used in a typical attack scenario, because
the current and the voltage are assumed to be linearly dependent, as long as the oscilloscope
setup parameters are consistent during all measurements.

Various measurement setups are described in [29], the differences being primarily in
the shunt resistor placement.

• Shunt resistor in GND path, with the voltage across the resistor being sampled by the
oscilloscope, as shown in Figure 4a.

• Shunt resistor in VDC path, with the voltage across the cryptographic device being
sampled by the oscilloscope, as shown in Figure 4b, also observing voltage drops of
the power regulator.

The latter setup offers an advantage when the device under attack has multiple power
networks, because it allows the attacker to measure the just cryptographic core consumption.
When the voltage is measured by using a shunt resistor in the ground path (Figure 4a),
the measured voltage typically contains more noise such as noise caused by the device’s
peripheral drivers. When measuring in the VDC path (Figure 4b), the DC shift must be
removed (unless measuring in a differential mode), which can be ensured either by using
the oscilloscope’s AC mode, or by using external DC blocker. Other choices for power
measurement include differential or current probes. However, these are not recommended
unless necessary, as they present an additional source of environmental noise [29].
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Figure 4. Example of a power measurement setup.

In a real-world attack, any decoupling capacitors near the cryptographic core must be
removed, as they might filter out the relevant voltage changes. Correct power measurement
setup is crucial for successful side-channel analysis. Parameters such as the environmental
noise, sampling rate, or synchronization jitter have a direct impact on the attack success [30].

2.1.2. Electromagnetic Radiation

Similarly to power measurement, an oscilloscope connected to a near-field probe may
be used for measurement of electromagnetic radiation [7]. As mentioned earlier, there is
a close relationship between the power consumption and the radiation [22].

Attacking electromagnetic radiation offers more degrees of freedom compared to the
power analysis. The attacker can examine a particular part of the chip only, and she can
choose from a wide variety of probes. Consequently, EM analysis may provide a very
powerful tool at the cost of more intricate and more costly employment. Further discussion
of EM side channels is outside of the scope of this paper.

In addition to directly measuring electromagnetic radiation of the device under at-
tack, data-dependent leakage may also be unintentionally broadcast by a radio transmitter
present on the same chip (such as SoC bluetooth/WiFi transmitters with built-in encryp-
tion) [31]. In mixed-signal systems on chip, the leakage from the digital part of the chip
couples through substrate to the high-frequency analog radio transmitter [32]. This class of
attacks is called screaming channels and it allows the attacker to successfully reveal cipher
keys from traces obtained by a radio receiver from even 15 m distance [33].

2.1.3. Combinational Logic Delay

Combinational logic delay inside a chip can be satisfactorily modeled as inversely pro-
portional to the voltage drop of the internal power network [23], which is data-dependent
due to the switching activity. In FPGA chips, the delay can be measured internally by using
a delay-chain monitor [20,34], shown in Figure 5a, or by using a ring oscillator monitor [21],
shown in Figure 5b. Acquired delay traces can be used in side-channel analysis in a similar
fashion as the power traces.
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Figure 5. Combinatorial logic delay monitors.

Furthermore, crosstalk between two long wires inside the chip can be detected [35]
by using a ring oscillator monitor as a receiver. In a multitenant FPGA chip setting, where
independent customers share the same FPGA accelerator, e.g., in a cloud environment, these
monitors open the possibility for remote and even automated large-scale side-channel attacks.

2.2. Formal Model

This subsection presents a formal model of side-channel leakage and corresponding
terminology as described in [36,37]. The presented model is used for attack descriptions in
the following sections.

Consider a physical device performing a cryptographic operation Ek(x), depending
on a secret (sub)key k ∈ K, where K = Bm = {0, 1}m, x ∈ X . The unknown (sub)key is
then modeled as a random variable K : Ω→ K, the processed data as a random variable
X : Ω→ X .

Key-dependent state transitions (bit flips) occur inside the device during the execution
of Ek. These state transitions are described as word pairs (v1, v2) ∈ W , whereW = Bn×Bn,
v1 is the previous state, and v2 is the new state. Unknown transitions (word pairs) are
modeled as a random variable W : Ω→W .

State transitions W induce side-channel leakage L on space L, modeled by a side-
channel leakage function L(W). Leakage L is measured through the noisy physical observ-
able O on space O.

The model describes a cascade of two channels W → L → O. This cascade is
comprised of a leakage channel W→ L through which information on processed words
W leaks in L, and observation channel L → O through which the attacker obtains noisy
information on L. The described channels are illustrated in Figure 6.

Observing O then means measuring q ∈ N+ traces oxi (t), i = 1, 2, . . . , q, of device’s
side channel (e.g., power consumption) O(t), while processing known data xi. In the
case of Rijndael/AES, oxi might be a trace similar to the one in Figure 3, and xi might be
a corresponding plaintext or ciphertext block.

A side-channel attack is then defined as determining the (sub)key k by reconstructing
the words W and using information on L contained in O. For example, the attack may be
performed in these steps:

1. The real leakage function L is unknown, so the attacker assumes a hypothetical leakage
function L̂ (described in Section 2.3).

2. The attacker makes a guess k̂ ∈ K on the real (sub)key k.
3. Based on the known data X, she computes an intermediate value fk̂(X) within the

Ek computation.
4. The intermediate value implies a guess Wk̂, which in turn implies a guess L̂k̂ = L̂(Wk̂).
5. Finally, the attacker checks if the guess L̂k̂ is compatible with the observed O.
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Figure 6. Illustration of channels involved in side-channel analysis.

This attack scenario assumes that the real (sub)key k is fully enumerable in a reasonable
time and space. As shown in Sections 3 and 4, side-channel attacks typically target a single
subkey, e.g., an octet in the case of Rijndael/AES.

2.3. Leakage Function

Side-channel attacks can be classified into two groups according to the approach of
the hypothetical leakage function L̂:

• Non-profiled attacks, in which the attacker only makes use of an explicit leakage
function, which is effective for a range of devices (e.g., based on CMOS technology)
instead of being tailored for a specific one.

• Profiled attacks, which consist of a profiling step, in which the attacker examines
a duplicate of the device under attack and she creates her own leakage approximation.
Furthermore, her approximation inherently takes noise contained in O into account,
making her empirical model more effective. This model is used for the attack, and an
explicit leakage function may or may not be used during the process.

In addition to the differences regarding the approach to the hypothetical leakage
function, these two types of attacks also assume a differently powerful attacker: for a pro-
filed attack, an exact duplicate of the device under attack is required, whereas it is not for
a non-profiled attack.

This subsection briefly introduces widely used explicit leakage functions necessary
for non-profiled attacks, which are discussed thereafter in Section 3. Profiled attacks are
discussed later in Section 4.

2.3.1. Hamming Distance and Hamming Weight

A Hamming distance leakage function for v1, v2 ∈ Bn is defined as a number of bit
positions at which the words v1, v2 differ [18]:

L̂HD(v1, v2) = HD(v1, v2) ∈ L = {0, 1, . . . , n}. (1)

The function corresponds to the number of bit flips in an n-bit wide register dur-
ing (v1, v2) transition. It is a generally applicable model suitable for attacking CMOS
logic. The Hamming distance is equal to the Hamming weight of XOR of the operands:
HD(v1, v2) = HW(v1 ⊕ v2), where Hamming weight HW is defined as a number of bits in
the words that are set to one.

When v1 is a zero vector, the Hamming distance leakage function reduces to Hamming
weight leakage function [38],

L̂HW(v2) = HW(v2) ∈ L = {0, 1, . . . , n}, (2)
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for v2 ∈ Bn. This is often the case when attacking software implementations in microcon-
trollers [6,39].

Assuming Hamming weight HW(x), x ∈ Bn and uniformly distributed values of n bits
in a word x ∈ Bn, the following properties hold for Hamming weight (and consequently
Hamming distance),

HW(x) ∼ Binom(n,
1
2
), (3)

E(HW(x)) =
n
2

, Var(HW(x)) =
n
4

. (4)

Furthermore, the binomial distribution can be satisfactorily approximated by the
normal distribution for p = 1

2 [40], and therefore

HW(x) ≈ N (
n
2

,
√

n
4
). (5)

Generalized Distance Model

Less commonly, different weights may be assigned for 0→ 1 and 1→ 0 transitions,
resulting in a generalized distance leakage function. For example, weight 1.5 may be
used instead of 1 for the 1 → 0 transition to provide a more effective attack on some
platforms [41].

2.3.2. Identity

The identity leakage function [36]

L̂id( fk̂(xi)) = fk̂(xi) ∈ L, (6)

for xi ∈ X , is equal to the targeted intermediate value within the Ek(xi) computation.
It is the most general leakage function in the sense that it puts no assumptions on the
cryptographic device or technology.

3. Non-Profiled Attacks

Non-profiled attacks can be divided into:

• parametric/moment-based attacks, which exploit statistical moments (such as mean
or variance). Typical examples include differential power analysis [6] or correlation
power analysis [17,18];

• non-parametric/information-theoretic attacks, which exploit the entire underlying
statistical distribution. A typical example is mutual information analysis [36]; and

• machine learning-based attacks, namely the deep learning power analysis [42].

These attacks are presented in more depth in this section.
Unless stated otherwise, all of the attack descriptions in this section assume the attacker

has already acquired q ∈ N+ traces oxi (t), i = 1, 2, . . . , q, of the device’s side channel O(t)
(e.g., power consumption), while processing known data xi (e.g., plaintext), where bits
in xi are uniformly distributed. Usage of uniform plain text gives a good confidence
about uniformity of intermediate values during the computation, because a cipher where
properties such as diffusion are expected is typically targeted.

The q measured traces can be modeled as q samples from a multivariate random
variable O(t), where the dimension of the variable corresponds to a number of sampling
points within single trace. All the attacks presented in this section, except for the last
one, are univariate, i.e., only a single point in time is examined, which is desirable when
the sensitive intermediate value manifests itself at a single time instant. In this section,
unless stated otherwise, it is assumed that the interesting time instant t = τ is known and
only the single relevant sampling point is considered. The q measured traces are therefore
considered a univariate random variable O(τ).
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In practice, when the time instant is unknown, the attack is performed at every time
instant t independently. The final attack evaluation thus typically requires more attention
and skill due to a larger false-result chance. Alignment of the traces is required when
synchronization of the measurements (e.g., by using a trigger signal) is not possible.

3.1. Differential Power Analysis (DPA)

The differential power analysis [6] attack is performed in these steps:

1. Assume a single bit (n = 1) Hamming weight (or distance) leakage function L̂.
2. Enumerate (sub)key guesses k̂ ∈ K.
3. Compute an intermediate value v2 = fk̂(xi), ∀k̂, xi (and the previous state v1 if Ham-

ming distance is used) and consider only a single bit (e.g., the LSB).
4. For every guess k̂, partition measurements oxi into two groups Ok̂

0, Ok̂
1 according to the

leakage function L̂:
Ok̂

0 = {oxi | L̂(v1, fk̂(xi)) = 0}, (7)

Ok̂
1 = {oxi | L̂(v1, fk̂(xi)) = 1}. (8)

5. Select the guess k̂ for which the groups’ Ok̂
0, Ok̂

1 means differ the most.

• For wrong guesses k̂, the traces for which L = 0 and the traces for which L = 1
are theoretically uniformly distributed in both groups.

• For the right guess k̂, the groups Ok̂
0, Ok̂

1 should be distinguishable by their mean
value, due to the bias caused by the fixed bit.

In the last step, the original Kocher’s DPA [6] selects the guess k̂ for which the absolute
difference of means between the two groups is greatest. More formally, the hypothesis
about equal means may be examined by using Welch’s t-test or a similar statistic.

Example: Attacking First Round of Rijndael/AES

1. Assume Hamming weight or identity single-bit leakage (Hamming weight is equiva-
lent to identity for n = 1).

2. Select an enumerable key-dependent intermediate value during Rijndael/AES encryp-
tion: fk̂(xi) := Sbox(xi ⊕ k̂). Sbox is an 8-bit bijection, fk̂(xi) is therefore computable
for each byte independently of the other bytes.

3. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255}, compute the intermediate
value v2 = fk̂(xi), ∀k̂, xi and choose, e.g., the LSB.

4. Use the Hamming weight of the LSB as leakage function and partition traces oxi

to groups Ok̂
0, Ok̂

1.
5. Select the subkey guess k̂ for which the two groups differ the most.

Because DPA builds its hypothesis on a single bit value, its assumptions regarding the
leakage are very general. This may be one of the reasons for false results, so-called “ghost
peaks”. The choice of the bit in fk̂(xi) has direct impact on the attack success. These facts
are a motivation for multi-bit DPA as described further [43,44].

3.2. Multi-Bit DPA and Partitioning Power Analysis (PPA)

Bevan’s approach to multi-bit extension of the DPA is performing the original DPA
independently for different bits of intermediate value fk̂(xi) and summing all the indepen-
dent differences of means [43]. Then the subkey guess with the greatest summed difference
is selected. This approach reduces the number of traces necessary as well as the chance of
a false result [43].
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Messerges’s multi-bit extension of the original DPA suggests using n-bit Hamming
weight or Hamming distance leakage model [38], therefore utilizing the whole fk̂(xi) value.

This time, two sets Ok̂
<, Ok̂

≥ are defined so that

Ok̂
< = {oxi | L̂( fk̂(xi)) <

n
2
}, (9)

Ok̂
≥ = {oxi | L̂( fk̂(xi)) ≥

n
2
}, (10)

and their difference is examined similarly to the original DPA.
Partitioning power analysis [45,46] is a generalization of the multi-bit DPA. Assuming

an n-bit fk̂(xi) intermediate value and a Hamming weight or Hamming distance leakage

function, the traces oxi are partitioned into (n + 1) sets Ok̂
0, . . . Ok̂

n so that

Ok̂
j = {oxi | L̂( fk̂(xi)) = j}. (11)

The distinguishing statistic (which is a difference of means in the original DPA) is then
defined by using weights aj ∈ R as

n

∑
j=0

aj · µOk̂
j
, (12)

where µ
Ok̂

j
are means of the aforementioned groups.

The original DPA is a special case of 1-bit PPA where a0 = −1, a1 = 1. Bevan’s
4-bit DPA is a special case of 4-bit PPA where a0 = − 1

8 , a1 = − 1
4 , a2 = 0, a3 = 1

4 , a4 = 1
8 .

Messerges’s n-bit DPA is a special case of n-bit PPA where aj = −1 for 0 ≤ j < n
2 , and

aj = 1 for n
2 ≤ j ≤ n [46].

3.3. Correlation Power Analysis (CPA)

The correlation power analysis [17,18] attack is performed in these steps:

1. Assume a Hamming weight or Hamming distance leakage function L̂.
2. Enumerate (sub)key guesses k̂ ∈ K.
3. Compute an intermediate value v2 = fk̂(xi), ∀k̂, xi (and the previous state v1 if using

Hamming distance).
4. For every key guess k̂, pairs (oxi , L̂(v1, fk̂(xi))) represent samples from joint distri-

bution (O, L̂k̂). (In other words, every trace is paired with the predicted Hamming
weight/distance).

5. Compute Pearson correlation coefficient ρk̂ =
Cov(O,L̂k̂)

σOσL̂k̂

for every k̂.

6. Select the guess k̂ for which the value of |ρk̂| is the highest.

Assuming there is a linear dependence between the predicted leakage and the physical
observation, a significant correlation ρk̂ should appear for the right guess k̂, while for
a wrong guess, the ρk̂ should converge to zero.

Example: Attacking Last Round of Rijndael/AES

1. Assume the architecture illustrated in Figure 7 and a Hamming distance leakage (both
v1, v2 must be derived). Let Y = Ek(X), i.e., ciphertext.

2. Let v2 = yi. The previous register state is then v1 = fk̂(yi) = Sbox−1(Perm−1(yi ⊕ k̂)).
Both values are once again enumerable for each byte independently of the other bytes
due to the fact that the MixColumns operation is not performed in the last round.

3. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255}, and compute the intermedi-
ate value fk̂(yi), ∀k̂, yi.

4. Compute the leakage function L̂HD( fk̂(yi), yi), ∀k̂, yi.
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5. Compute Pearson correlation coefficient ρk̂ =
Cov(O,L̂k̂)

σOσL̂k̂

for every k̂.

6. Select the guess k̂ for which the value of |ρk̂| is the highest.

128

128

round key

ciphertext

S1 S2 S16...

8

Byte permutation
...

Round register

Round register

Figure 7. Architecture of Rijndael/AES last round. The scheme is unrolled for illustration purposes
only; both “round register” blocks depict the same hardware register.

Unlike previously described DPA attacks, which use a partitioning approach, the CPA
attack uses a comparative approach. However, CPA with a single-bit leakage function is
equivalent to the original DPA. Interestingly, CPA is equivalent to normalized PPA with
weights implicitly given by the distribution of bits in fk̂(xi). For a uniform distribution of
bits in fk̂(xi), CPA is equivalent to the Bevan’s multi-bit DPA [46].

The CPA attack assumes a linear relationship between the predicted leakage and
the physical observation. However, this requirement can be relaxed to monotonicity by
using the Spearman coefficient instead of the Pearson coefficient [47]. Similar to DPA, CPA
exploits statistical moments such as mean or covariance, and therefore requires a “normally”
distributed observation channel. The success of the attack largely depends on the quality
of the leakage approximation and present noise.

3.4. Mutual Information Analysis (MIA)

The mutual information analysis [36] attack is performed in these steps:

1. Assume an arbitrary leakage function L̂ ∈ L (with some restrictions, as explained in
Section 3.4.1).

2. Enumerate (sub)key guesses k̂ ∈ K.
3. Compute an intermediate value v2 = fk̂(xi), ∀k̂, xi (and the previous state v1 if using

Hamming distance).
4. Let L0, . . . , Ll be subsets of L so that the set {L0, . . . , Ll} is a partitioning of L. The ele-

ments Lj, j = 0, . . . , l, are called atoms.

5. Associate inputs xi that leak Lj under key guess k̂ to Lk̂
j :

Lk̂
j = {xi | L̂(v1, fk̂(xi)) ∈ Lj}. (13)

Each partition {Lk̂
0, . . . , Lk̂

l } induces a subdivision of measurements oxi .
6. Define conditional distributions {P

O | Lk̂
j
}l

j=0 by using the subdivision of O, and let

PO, PLk̂
be probability distributions of O, L̂k̂.

7. Select k̂ with the highest mutual information I(L̂k̂; O).

Unlike DPA or CPA, the mutual information analysis exploits mutual information,
which is defined as

I(X; Y) = DKL(PX,Y ||PX ⊗ PY), (14)
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where DKL is Kullback–Leibler divergence, i.e., a statistical distance describing probability
distribution difference. Mutual information is directly related to entropy H:

I(X; Y) = H(X)−H(X|Y) = H(X) + H(Y)−H(X, Y) = I(Y; X), (15)

where H(X|Y) is conditional entropy, H(X, Y) is joint entropy. Mutual information can be
intuitively interpreted as the amount of information obtained about X by observing Y or, in
other words, the reduction of uncertainty in X obtained by observing Y.

The mutual information computation may go as follows:

1. Using measurements oxi belonging to Lk̂
j , estimate the conditional distribution P

O | Lk̂
j

and the conditional entropy H̃(O|L̂k̂ = j).
2. Compute the conditional entropy H̃(O|L̂k̂) by using {H̃(O|L̂k̂ = j)}l

j=0.

3. By using all of the measurements oxi , estimate the distribution PO and the entropy H̃(O).
4. Compute the mutual information Ĩ(L̂k̂; O) = H̃(O)− H̃(O|L̂k̂).

Example: Attacking AES/Rijndael with Minimum Assumptions

1. Assume an identity leakage function L̂( fk̂), e.g., three MSBs of fk̂(xi) = Sbox(xi ⊕ k̂).
2. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255}, and compute the intermedi-

ate value fk̂(xi), ∀k̂, yi.

3. For every subkey guess, associate each oxi with an atom of {Lk̂
i }7

i=0 based on its input’s
predicted leakage.

4. For every subkey guess, estimate the densities PO and PO|L̂k̂
and compute the mutual

information Ĩ(L̂k̂; O).
5. Select k̂ with the highest mutual information Ĩ(L̂k̂; O).

Crucial aspect of mutual information analysis is the estimation of probability densities
PO and PO|L̂k̂

. Some of the choices include:

• histogram, i.e., a non-parametric discrete estimate;
• kernel density estimate, i.e., a non-parametric continuous estimate; and
• finite mixture model, i.e., a (semi-)parametric continuous estimate.

The quality of the estimate has a direct influence on both attack success and computa-
tional complexity [48,49].

A histogram provides a simple and efficient estimate with the most critical parameter
being the number of bins [48]. The best estimate would require as many bins as there are
values in the domain; however, it would be problematic to get enough values in every
bin for it to be statistically significant. Less bins result in less information, but also lower
susceptibility to noise. The original MIA [36] proposes using l + 1 bins, i.e., as many bins
as there are atoms in the L partitioning.

A kernel density estimate provides better attack results than the histogram [48] at the cost
of its higher computational complexity. In this case, the kernel and bandwidth are the most
critical parameters. Popular kernel choices include Epanechnikov (which is mean-square-error
optimal) and Gaussian (for its convenience). Bandwidth has a similar role as bins in histograms,
and it can be intuitively seen as a “smoothing parameter.” Generally speaking, the attacker
aims to select the bandwidth as small as allowed by the data. A “rule-of-thumb” bandwidth
estimator can be used alongside the Gaussian kernel [50].

A finite mixtures model assumes the underlying distribution to be a mixture of dis-
tributions, whose parameters are estimated, e.g., by using the expectation-maximization
algorithm. Typically, a mixture of Gaussians is assumed [51].

Mutual information analysis puts no hard assumptions on the leakage function or the
underlying distributions and provides sound results even with a simple identity leakage
function. It provides a generic and powerful side-channel distinguisher (although it is less
efficient in scenarios well-suited for DPA/CPA) [48,49,52].
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3.4.1. Leakage Function in Partitioning Attacks

Mutual information analysis allows for an arbitrary leakage function, giving the
attacker a great degree of freedom. Although Hamming weight or Hamming distance
leakage functions may be used when it is possible to predict both v1, v2, their usage
inherently leads to a loss of information. Identity leakage function, which is much more
generic, may also be used. If the Hamming weight/distance estimate is possible, identity is
shown to be less efficient, but still effective [48].

The leakage function must be selected so that a different k̂ must not yield a permutation
of L̂k̂. For example, assume that using the identity of Rijndael/AES bijective S-box output.

Different k̂ then leads to a permutation of {Lk̂
0, . . . , Lk̂

l }, which means that the mutual
information is constant and independent of k̂ [36]. This limitation can be easily overcome,
e.g., by choosing only seven least significant bits of the Sbox output, or by using a Hamming
weight/distance [36].

This problem does not only pertain to MIA, but to every partitioning attack (all the
presented non-profiled attacks except CPA). When fk̂(xi) is an injective function, an attack
using trivial partitioning where each value belongs in its distinct class will always fail [53,54].

3.5. Kolmogorov–Smirnov Analysis (KSA)

The Kolmogorov–Smirnov analysis [48,55] attack is performed in these steps:

1–6. The first six steps are same as for mutual information analysis in Section 3.4. Define
the conditional distributions {P

O | Lk̂
j
}l

j=0 and the distribution PO.

7. For every k̂, compute the average Kolmogorov–Smirnov distance between PO and
P

O | Lk̂
j
, optionally further normalized by 1

|O
Lk̂

j
| , where |O

Lk̂
j
| is a size of the measure-

ments set belonging to atom Lk̂
j :

E
j
(

1
|O

Lk̂
j
|DKS(PO ||PO | Lk̂

j
)). (16)

8. Select the key guess k̂ with the largest average KS-distance.

The Kolmogorov–Smirnov distance between PX and PY is defined as

DKS(PX ||PY) = sup
x
|FX(x)− FY(x)|, (17)

where FX is a cumulative density function of X. The Kolmogorov–Smirnov analysis is
heavily inspired by the mutual information analysis. However, instead of estimating
probability density function, the easier-to-obtain cumulative density function is used.

Alternatively, interclass Kolmogorov–Smirnov Analysis (iKSA) [56] distinguishes the
key guess using the distance between the conditional distributions:

1
2 E

j,j′
(DKS(PO | Lk̂

j
||P

O | Lk̂
j′
)). (18)

Other choices for comparison of the distributions include Cramér–von Mises criterion
or different F-divergences [48].

The Kolmogorov–Smirnov Analysis shares some important characteristics with MIA,
as both attacks can be used with an identity leakage function, and therefore without precise
knowledge about the implementation and leakage. It can provide better results for weak
signals than MIA due to its noise robustness [55].
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3.6. Differential Deep Learning Analysis (DDLA)

The differential deep learning analysis [42] attack is performed in these steps:

1. Assume an arbitrary leakage function L̂ ∈ L.
2. Enumerate (sub)key guesses k̂ ∈ K.
3. Compute an intermediate value v2 = fk̂(xi), ∀k̂, xi (and the previous state v1 if using

the Hamming distance).
4. Create labeled training datasets {(oxi , L̂(v1, fk̂(xi)))}k̂, ∀k̂, oxi . Note that the same

limitations as described in Section 3.4.1 apply.
5. Perform deep learning classifier training for every dataset.
6. Select the key guess k̂ with the best DL training metrics.

Unlike the previously described attacks in this section, the differential deep learning
analysis is typically used in a multivariate fashion, not univariate. In other words, the
attack is not performed at a single sampling point or all the sampling points in the trace
independently. Instead, the classifier is fed with the multivariate vectors corresponding to
the entire encryption.

The differential deep learning analysis is a partitioning attack, like all the previously
presented attacks except CPA. A key-dependent partitioning of the data is created and then
the distinguishability of the partitions is examined by using the classifier. For the correct
key guess, the classifier should be able to learn distinctive features of differently labeled
data. When a wrong guess is made, the traces are randomly distributed across labels,
and therefore the training metrics should be significantly worse than for the correct guess.
Different training metrics are proposed for the final selection of the key, e.g., by using
sensitivity analysis [42].

Various deep-learning architectures, such as a multilayer perceptron or a convolutional
network may be used for the classifier. Translation-invariance property of convolutional
networks can be exploited to attack desynchronized traces [42,57], whereas previously
described attacks would require synchronization of the traces during preprocessing, e.g.,
by using autocorrelation, due to their univariate nature. A distinct disadvantage of using
the machine-learning-based blackbox approach is limited explainability of the results [58].

4. Profiled Attacks

Profiled attacks assume the attacker has a fully controlled identical copy of the device
under attack at her disposal. She is capable of observing the device’s side channels during
execution of the identical cryptographic implementation. Moreover, she is able to feed the
implementation with arbitrary inputs and keys. Her attack is tailored for a specific device
and therefore more effective and efficient than a nonprofiled attack.

A profiled attack consists of two phases:

1. Profiling phase, during which an empirical model of the leakage is created by using
the identical copy of the device under attack.

2. Attack phase, during which observations of the device under attack are evaluated by
using the previously profiled model.

Unlike non-profiled attacks presented in Section 3, all the presented profiled attacks
are multivariate, i.e., full traces O(t) are considered, where the dimension (t) corresponds
to a number of sampling points within a single trace.

4.1. Template Attack (TA)

The template attack [19,59] is performed in these steps:

1. Consider an arbitrary leakage function L̂ ∈ L.
Profiling phase

2. Measure a profiling set of traces o(xi ,ki)
(t) using desired (typically, but not necessarily

random uniform) inputs (xi, ki).
3. Compute an intermediate value v2 = fki

(xi), ∀ki, xi (and the previous state v1 if using
Hamming distance).
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4. Let L0, . . . , Ll be subsets of L so that the set {L0, . . . , Ll} is a partitioning of L. The ele-
ments Lj, j = 0, . . . , l, are called atoms.

5. Associate measurements o(xi ,ki)
whose inputs (xi, ki) leak Lj to Oj:

Oj = {o(xi ,ki)
| L̂(v1, fki

(xi)) ∈ Lj}. (19)

6. Select points of interest ti within the measurements o(xi ,ki)
(t), e.g., by using sum of

differences of average traces of each Oj set or by using principal component analysis.
From this moment on, restrict the measurements to these points only.

7. Create empirical models, so-called templates, Tj, e.g., Gaussian probability estimates,
characterizing leakage induced by atoms Lj using traces in set Oj.
Attack phase

8. Measure an attack set of traces oxi (t) using desired plain texts xi.
9. Enumerate (sub)key guesses k̂ ∈ K.
10. Compute an intermediate value v2 = fk̂(xi), ∀k̂, xi (and the previous state v1 if using

Hamming distance).
11. Associate measurements whose inputs xi leak Lj under key guess k̂ to Ok̂

j :

Ok̂
j = {oxi | L̂(v1, fk̂(xi)) ∈ Lj}. (20)

12. Compute probabilities Pr(O = oxi | L ∈ Lj), oxi ∈ Ok̂
j that measurements in Ok̂

j leak Lj
using the templates Tj.

13. Select the key guess k̂ with the highest overall probability (product of posterior
probabilities) of the predicted leakage.

The template attack provides the attacker with a very powerful and universal tool.
The empirical templates Tj are typically multivariate Gaussian models [19]. A creation of
the Gaussian template is demonstrated in the following examples.

Example: Attacking Rijndael/AES Using Hamming Weight and Gaussian Templates

1. Assume the Hamming weight leakage function L̂ and intermediate value fk̂(xi) =

Sbox(xi ⊕ k̂).
Profiling phase

2. Measure a profiling set of traces o(xi ,ki)
(t), by using random uniform inputs (xi, ki).

3. Partition measurements o(xi ,ki)
(t) into nine groups according to the Hamming weight

of S-box output:
Oj = {o(xi ,ki)

(t) | L̂( fki
(xi)) = j}. (21)

4. Select sampling points of interest t1, . . . , tm using sum of differences of average traces:

(a) Compute the average measurement Mj(t) for every group Oj.
(b) Compute the sum of the absolute pairwise differences of these average power

traces: ∑i,j |Mi(t)−Mj(t)| and select the most deviate points, preferably in
different clock cycles.

Reduce the dimensionality of O(t) and of the average traces Mj(t) to these selected
points only.

5. Define noise measurements as

Nj = {n(xi ,ki)
(t) | n(xi ,ki)

(t) = o(xi ,ki)
(t)−Mj(t) ∧ o(xi ,ki)

(t) ∈ Oj}, (22)

and consider Nj samples from variable Nj.
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6. Compute the noise covariance matrices Σj between all the points of the interest for
every group Nj:

Σj =

 Var(Nj(t1)) . . . Cov(Nj(t1), Nj(tm))
...

. . .
...

Cov(Nj(tm), Nj(t1)) . . . Var(Nj(tm))

. (23)

7. Tj = (Mj, Σj) is a Gaussian template characterizing leakage L = j, i.e., Hamming
weight of the S-box output.
Attack phase

8. Measure/capture an attack set of measurements oxi (t), by using random uniform
plaintexts xi.

9. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255} and compute the intermediate
value v2 = fk̂(xi), ∀k̂, xi.

10. Partition the traces oxi (t) into nine groups according to the predicted Hamming
weight, for every subkey guess:

Ok̂
j = {oxi (t) | L̂( fk̂(xi)) = j}. (24)

11. For every measurement oxi (t) in group Ok̂
j , evaluate the probability of it belonging in

the designated group by evaluating the template Tj = (Mj, Σj):

(a) Compute hypothetical noise vector nxi (t) = oxi (t)−Mj(t).
(b) Compute the probability of observing nxi (t) by using the multivariate Gaussian

probability distribution:

pj(nxi (t)) =
1√

(2π)N |Σj|
exp(−1

2
nxi (t)

> Σ−1
j nxi (t) ), (25)

where N is number of points of the interest, |Σj| is the determinant of Σj, and
Σ−1

j is its inversion.

12. Select the key guess k̂ with maximum overall probability of the measurements being
partitioned in the correct groups.

Example: Attacking Rijndael/AES Using a Single Measurement

1. Assume identity leakage function L̂ and intermediate value fk̂(xi) = k̂. Assume
an atom Lj for every subkey value, i.e., 256 atoms.
Profiling phase

2. Measure a large amount of traces by using uniform plain texts and keys and create
256 Gaussian templates.
Attack phase

3. Measure a trace using a uniform plaintext and evaluate it against all the templates.
Select the key guess with the highest probability.

Computing the probabilities as described above may lead to numerical instabilities,
which can be solved by using logarithms of probabilities instead [28].

The creation of the model (i.e., the templates) requires a large amount of measurements
in comparison to the actual attack. Efficient and effective templates may require further
evaluation due to potential overfitting; templates too specific for the attacker’s copy might
not work on the device under attack [19].

Various ways to improve the efficiency of the template attack are described in [60],
such as methods for the dimensionality reduction/selection of points of the interest, usage
of pooled covariance matrices, combining multiple traces, etc.
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Many use cases and scenarios are possible by using the extend-and-prune approach,
i.e., starting with small parts of information and increasingly extending the attack. Thanks
to the profiling phase, the attack phase is very effective and efficient.

4.2. Machine Learning-Based Attacks

Machine learning (ML) algorithms are algorithms that learn to solve a problem without
being explicitly programmed to do so. In this context, “to learn” can be perceived as
“to build an empirical model using training data”, whereas “to solve” can be perceived as
“to evaluate real data using the model”. A profiled side-channel attack as described in this
section can be reduced to a classifying task, which is thoroughly studied in the context of
supervised machine learning [61].

Profiled machine learning-based attacks are typically performed in a similar fashion
as the template attack, and can often be classified as one. They also share many of its
advantages and disadvantages. The crucial difference is in the choice of the empirical
model; instead of Gaussian, a machine learning-based classifier is used.

A support vector machine (SVM) is a machine learning algorithm commonly used for
classification, based on creating an optimal hyperplane between different classes. It was
shown to be more efficient than a Gaussian template attack in some aspects [62–64], per-
forming better on noisy measurements and requiring a smaller profiling set. However,
selection of the algorithm parameters, such as the kernel function, may have a significant
impact on its performance [62]. Both binary and multi-class SVM classifiers were suc-
cessfully used to attack Rijndael’s S-box output [65]. Other common classifier choices are
decision trees, random forests [64,66], and others.

Neural network-based deep learning classifiers are a popular choice in side-channel
security [67,68]. The non-profiled variant of the attack is presented in Section 3.6. Both multi-
layer perceptron [69,70] and convolutional neural network [57,71] architectures are suitable
for a profiling attack. Whereas a multilayer perceptron classifier must be fed with aligned
power traces, the location and scale invariant convolutional neural network can extract the
features itself and therefore it is capable of processing misaligned or jittered measurements
without prior preprocessing [57]. It is capable of exploiting both univariate and multivariate
leakage, as well as utilizing both Hamming weight/distance or identity training labels [72].

Hyperparameters of the neural network model include the network architecture
(number of nodes in a layer, number of layers, activation function) and learning parameters
(number of epochs, batch size, optimization algorithm, learning rate). Unfortunately, there
does not seem to be the best model for every scenario (“no free lunch” theorem). Finding
a suitable model is a nontrivial task; however, it is crucial for a successful attack. Class
imbalance may present a significant obstacle [73], especially when Hamming weight is
used (e.g., only a single word value x ∈ Bn leads to HW = 0, in contrast to HW = n

2 ). Even
though the neural network can be fed the whole unprocessed and even misaligned traces,
it holds that the higher is the dimension of the data, the higher is the attack complexity and
the larger training sets are required [66]. Similarly to the template attack, both underfitting
and overfitting the of model during the learning phase may lead to an unsuccessful attack;
the former cannot generalize the observations, whereas the latter learns non-relevant details
and noise [72].

5. Side-Channel Attack-Related Metrics

Several metrics related to side-channel attacks are presented in this section. Experi-
mental metric success rate and Guessing entropy are presented in Section 5.1. Theoretical
metrics’ confusion coefficients and distinguishing margins, and their relationship to differ-
ential cryptoanalysis are presented in Section 5.2.

Let k̂ ∈ K be a (sub)key guess during an attack and let k∗ ∈ K be the real (secret)
(sub)key. Define a distinguisherDk̂(ox1 , . . . , oxq ; x1, . . . , xq) as an absolute value of the statis-
tic that is used to distinguish the correct key during the attack. For example, a difference
of means or t-value in case of DPA (Section 3.1), a correlation coefficient in case of CPA
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(Section 3.3), a mutual information in case of MIA (Section 3.4), a Kolmogorov–Smirnov
distance in case of KSA (Section 3.5), probabilities in case of DDLA (Section 3.6), and
TA (Section 4.1). Assume that the higher the value of Dk̂ is, the higher is the probability of
the correct key k̂.

5.1. Success Rate and Guessing Entropy

Success rate [74] and guessing entropy [75,76] are experimental metrics allowing
a comparison of different attacks on the same implementation. A simplified definition of
these metrics is presented in this subsection, omitting two parameters: time complexity
τ and memory complexity m [74].

Assume all the key guesses k̂ are sorted according to the value of Dk̂ in descending
order, i.e., the most probable candidate is positioned first, the second most probable
candidate is positioned second, etc. Let #(k̂) be a position of the guess k̂. Success rate is
then defined as the probability of the correct key guess k∗ being on the first position:

SR(q) = Pr(#(k∗) = 1), (26)

where q is the number of measurements available. In other words, it is the probability of
the attack revealing the correct key. The n-th order Success rate is defined as

Succn(q) = Pr(#(k∗) ≤ n). (27)

Guessing entropy is a related metric defined as the expected position of the correct
key within the previously mentioned sorted guesses:

GE(q) = E(#(k∗)), (28)

where q is a number of measurements available. Whereas success rate characterizes the
probability of the attack being successful, guessing entropy characterizes the amount of the
remaining work of the attacker when the attack fails to reveal the correct key.

In order for the values of success rate or guessing entropy to be trustworthy, a large
number of independent experiments must be performed [74].

5.2. Confusion Coefficient and Distinguishing Margin

Consider a single-bit intermediate value fk(x) (as in a DPA attack). Let k∗ be the correct
key and k ∈ K be any key hypothesis. The confusion coefficient κ(k∗, k) is then defined as
a probability of the bit fk(x) having a different value given two different keys [77]:

κ(k∗, k) = Pr( fk∗(x) 6= fk(x)). (29)

It reaches minimum when the two keys are the same: κ(k, k) = 0, and maximum
κ(k∗, k) = 1 iff ∃k 6= k∗, ∀x : fk∗(x) = fk(x). Assuming fk(x) = S(x ⊕ k), the confusion
coefficient is directly linked to cryptoanalytical metrics of the boolean S-box S : Bn → Bm,
namely to its differential uniformity ∆S:

∆S = max
a∈Bm ,k∈Bn

|{x ∈ Bn | S(x)⊕ S(x⊕ k) = a}|. (30)

Considering m = 1 ( f : Bn → Bm being equivalent to { fi : Bn → B}m
i=1) [78]:

2−n∆S −
1
2
= max

k 6=k∗
|κ(k∗, k)− 1

2
|. (31)

Let b be one bit of a sensitive variable fk(x) for a perfectly secret encryption algorithm.
Then b is equiprobable, i.e., Pr(b = 1) = Pr(b = 0) = 1

2 [79]. Assume that the bit b is
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the one under attack. In such a case, the DPA/CPA and KSA/iKSA distinguishers can be
rewritten in following closed-form expressions [78]:

Dk
CPA = Dk

DPA =
2√

1 + 1/SNR
· |κ(k∗, k)− 1

2
|, (32)

Dk
KSA = 2Dk

iKSA = (2Φ(
√

SNR)− 1) · |κ(k∗, k)− 1
2
|, (33)

where Φ(x) is a cumulative distribution function of the standard noise N (0, 1). These
equations describe the relationship between the distinguisher and noise. Notice that for
large noise, the first multiplicand in both equations tends to zero.

Let the distinguishing margin (distance to the nearest rival) be the distance between the
correct key k∗ distinguisher valueDk∗ and the maximum incorrect key guess k̂ distinguisher
value [80]:

DM = Dk∗ −max{Dk̂|k̂ 6= k∗}. (34)

The distinguishing margin characterizes the ability of the attacker to distinguish the
correct key, i.e., her ability to make the attack succeed. For the Kolmogorov–Smirnov
distinguisher, it can be explicitly expressed in terms of confusion coefficient, and therefore
differential uniformity [78]:

DMKSA = λ (
1
2
−max

k 6=k∗
|κ(k∗, k)− 1

2
|) = λ(1− 2−n∆S). (35)

This equation demonstrates that the attack becomes easier as the distance between
κ and 1

2 becomes smaller. It also provides a direct link between S-box properties, i.e.,
its differential uniformity, and its susceptibility to side-channel attacks; the harder the
differential cryptoanalysis, the easier the side-channel analysis.

6. Countermeasures against Attacks

Countermeasures against side-channel attacks can be categorized into two basic groups [28]:

• Hiding, whose main objective is to “hide” the sensitive variable leakage, ideally to
entirely remove the data dependency of the L→ O channel. Hiding countermeasures
generally focuses on the signal-to-noise ratio (recall Equations (32) and (33)). Hiding
countermeasures can sometimes be further classified as (1) hiding in amplitude, and
(2) hiding in time. Shuffling, which randomizes the algorithm flow, is sometimes
considered a separate category, as it is implemented on the algorithm level; however,
its effect is similar to that of hiding.

• Masking randomizes the processed data W while still providing correct results, there-
fore making it hard (ideally impossible) for the attacker to predict any intermediate
values. The aim is to make the W→ L channel appear random, ideally to remove the
data dependency altogether. Unlike hiding countermeasures, masking typically re-
quires a source of fresh randomness. The security of the masking schemes is therefore
dependent on the used random generator.

Correctly employing the presented countermeasures does not result in an absolutely
secure implementation. The objective is to make the attack infeasible in a real-world
scenario, typically by increasing either the number of measurements necessary or the
computational cost of the attack over a limit of resources practically available to the attacker.
Similar to the classic cryptoanalysis, this limit lowers in time as the available computational
capacity increases. Real-world attack examples [16] in 2021 show that protection against
extreme numbers of traces (hundreds of millions or more) is necessary. Attacks on protected
implementations are presented later at Section 7.
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In implementation terms, the countermeasures can further be categorized into three
groups [81]:

• Secure logic styles, which incorporate custom logic gate libraries, designed to minimize
the data dependency. These countermeasures inherently introduce a large overhead,
and their implementation is typically expensive. Countermeasures in this category
are generally “hiding in amplitude”.

• Additional modules, which are incorporated into the cryptographic design. The basic
advantage of these modules is their universal applicability and lower cost compared
to that of the secure logic style. Countermeasures in this category are generally hiding
countermeasures, either in amplitude or in time.

• Cryptographic module modifications, which aim to alter the encryption itself. While
offering a lower overhead than the previously mentioned categories, they are often
algorithm-specific and may present unforeseen weaknesses. This category contains,
most importantly, masking. However, some hiding countermeasures fall within the
category as well.

Additionally, some types of cryptography were believed to be resistant to SCA by
their nature. For example, chaos cryptography [82,83] was expected to be hard to attack
because of its unpredictable behaviour [84]. Nevertheless, these beliefs were disproven,
e.g., by a study showing that the chaos-based S-Boxes are similarly vulnerable to SCA as
the AES ones [85]. Similarly, ARX-based cryptography [86,87] was expected to be more
resistant to SCA, as there is no highly nonlinear element (S-Box) whereas later research
showed the opposite [88,89].

6.1. Secure Logic Styles

The logic gates are typically designed in static CMOS technology, as illustrated in
Figure 1). Various logic styles aim to compensate for their data-dependent behavior,
often combining concepts of differential and dynamic logic [24]. Differential logic uses
complementary signals (e.g., A and A) at gate input and output, implementing differential
pull-down networks to equalize the power consumption of different transitions. Two-phase
dynamic logic introduces clock-driven pre-charge, where the load capacitance is artificially
charged. Combination of the two styles is often referred to as dynamic differential logic or
dual-rail pre-charge logic [81].

Various countermeasures based on secure logic styles were proposed in the literature.
Sense amplifier-based logic (SABL) [12] is an example of dynamic differential logic. It
aims to ensure constant consumption of all input and output transitions at the cost of
complicated design (custom logic gates, “domino” logic), under the assumption that all
interconnections and capacitances are symmetrical (balanced). Simple dynamic differential
logic (SDDL) [13] uses ordinary CMOS gates, implementing the differential logic by using
De Morgan’s law and the pre-charge using AND gates. Wave dynamic differential logic
(WDDL) [13] extends the SDDL by limiting the used logic to AND and OR gates, thanks to
which a “precharge wave” is introduced to reduce overhead. Furthermore, WDDL promises
to be glitch-resistant, as opposed to SDDL, where data-dependent hazards may compromise
the countermeasure. Similarly to sense amplifier-based logic, SDDL and WDDL require
symmetrical interconnections and capacitances. Other extensions of dynamic differential
logic are available in the literature [90–92].

Adiabatic logic [93] was originally designed for low-power applications with the
aim of reusing energy efficiently instead of it being discharged. It is powered by a clock-
controlled power source, typically trapezoidal. Various logic styles which make use of
adiabatic logic were proposed with the aim of hiding leakage [94,95].

Other logic style examples include randomized multitopology logic [96] or use of
asynchronous logic styles [97–99].
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6.2. Additional Modules

Unlike countermeasures based on secure logic styles, the countermeasures presented
in this subsection put no (or minor) assumptions on the cryptographic module.

Measured SNR can be effectively lowered by employing noise generators inside the
cryptographic device. Different primitives can be utilized to build the generator, including
shift registers, block RAMs, switch boxes [14] or ring oscillators [100]. The design of the
actual cryptographic primitive can be used for correlated noise generation [101,102].

Current sense-shunt loop-back can be used for active current flattening to hide the
leakage [103,104]. Similarly, the current can be randomized by using a variable current
source [105]. Decoupling-based countermeasures are based on powering the cryptographic
core from internal capacitors [106–108] in order to hide the instantaneous consumption.

Hiding in time is typically achieved by employing a specific clock signal or by altering
the cryptographic algorithm. Isolated clock network can be used to deny the attacker the
possibility of using the global clock network for synchronization [109]. The clock signal can
be randomized [14]. Alternatively, dummy operations and data can be inserted randomly
during the computation [110–112]. Partial dynamic reconfiguration can be used to shuffle
the algorithm execution to hide the leakage in both time and amplitude [15].

6.3. Masking

Unlike previously presented countermeasures, masking [8] requires a detailed knowl-
edge of the cryptographic algorithm. Its implementation is modified so that all intermediate
values are masked by using a random value, making it difficult for an attacker to predict
the leakage and therefore mount an attack. A relevant function (group law) is chosen for
the masking according to the values domain, e.g., an exclusive or (XOR) in case of Galois
field—then the masking is called boolean. When the sensitive value is multiplied by a mask,
the masking is called multiplicative. Unlike boolean masking, multiplicative masking is
inherently unable to mask a zero value [113].

Unless stated otherwise, boolean masking is considered in this subsection. The sensi-
tive value x is split into d + 1 shares xi, where

x =
d⊕

i=0

xi. (36)

The splitting is done by generating d uniform random masks x1, . . . , xd and by putting
x0 = x⊕ x1 ⊕ . . .⊕ xd. The number of masks d is then called a masking order. Implemen-
tation secured with d-order masking should ideally be secure against attacks up to d-th
order [8,114] (as defined further in Section 7). However, the desired security level is often
not reached in practice [115,116] due to unforeseen imperfections.

A cryptographic algorithm typically consists of several linear and nonlinear operations,
some of which must be altered to function properly when the variable is split. Masking of
a linear operation f is trivial because all of the shares can be processed independently:

f (x) = f (x0 ⊕ . . .⊕ xd) = f (x0)⊕ . . .⊕ f (xd). (37)

There are different approaches to dealing with the nonlinear operations. Considering
substitution-permutation network-based ciphers, substitution boxes (S-boxes) are typically
the nonlinear operations.

Pre-computed masked S-boxes were originally proposed for first-order masked soft-
ware implementations [9] and later adapted for hardware [14,117]. The concept is further
described in Section 6.3.1.

A more efficient approach suitable for hardware Rijndael/AES implementations splits
the S-box into an inversion and an affine operation and masks the inversion by using
a multiplicative mask [118]. Even lower overhead can be achieved when the S-box com-
putation is performed in a composite field [119–121]. However, these hardware masking
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schemes were later shown to be vulnerable against first-order side-channel attacks due
to data-dependent glitches occuring during the S-box computation [115]. An example of
glitch-induced leakage in a masked AND gate is shown in ([122], section 4.1).

This issue is solved by glitch-resistant masking schemes, such as domain-oriented mask-
ing [11] or threshold implementation [10,122], which is further described in Section 6.3.2. Lower
overhead of these schemes can be once again achieved by using a composite field S-box
computation [123,124].

6.3.1. Pre-Computed Masked Substitution Boxes

Pre-computed masked S-boxes were originally proposed for first-order masked soft-
ware implementations [9] and later utilized in hardware (FPGA) by using block RAM [14]
or more efficient CFGLUT [117] primitives. In the following paragraphs, the concept will be
described as used for PRESENT [125] encryption. PRESENT is a lightweight substitution-
permutation network-based cipher with a block size of 64 bits and possible key sizes of
80 or 128 bits. Each round consists of a round key addition (XOR), a non-linear substitution
layer (4-bit S-boxes applied 16 times in parallel), and a linear permutation layer. After
31 rounds, the 32nd round key is finally added to produce the ciphertext.

Assuming the PRESENT encryption algorithm accepts plain text pt masked by XORing
a random mask m:

state′ := pt⊕m, (38)

where state′ is the masked cipher state, three round operations/layers must be taken into
account and altered appropriately so that equation

state = state′ ⊕m (39)

holds, allowing the ciphertext to be obtained using state′.
The first layer, round key addition, i.e., XOR, is a commutative and associative operation:

state′ ⊕ rk = (state⊕ rk)⊕m. (40)

Therefore, addition of the round key rk does not require any further alteration since
the output of the layer is already equal to the valid cipher state masked by m.

The last layer, the permutation layer, is a linear transformation P, used to permute
bits of the cipher state. The output of the layer is therefore equal to the valid cipher state
masked by a permuted mask:

P(state′) = P(state)⊕ P(m), (41)

which means the mask that would need to be subtracted to obtain the valid cipher state
changes to P(m).

The middle layer is a non-linear substitution layer S. The validity of the output is
assured by altering the substitution look-up table into a masked substitution layer S′

S′(state′) := S(state′ ⊕m)⊕ P−1(m), (42)

which realizes the original substitution upon masked input value and outputs the sub-
stitution result masked by m processed with inverse permutation P−1. This approach
countermands the mask alteration performed by the Permutation layer, since

P(state⊕ P−1(m)) = P(state)⊕ P(P−1(m)). (43)

Therefore, S′ is the only alteration which must be performed for Equation (39) to hold.
In this example, the mask m is used through entire encryption, allowing usage of

a single precomputed substitution layer. However, special care must be taken when the
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round state is written to a CMOS register holding the previous round state. Assuming the
Hamming distance leakage model, the mask m would get subtracted:

HD(x⊕m, y⊕m) = HW(x⊕ y⊕m⊕m) = HD(x, y). (44)

One possible solution to this problem is a combination with a register precharge hiding
countermeasure [117], where the working register is doubled and the encryption context is
interleaved with random data.

6.3.2. Threshold Implementation

Threshold implementation [10,122] is a glitch-resistant masking scheme suitable for
both hardware and software implementations [126].

According to the selected masking order d, the input is first split into d + 1 shares
as described in Equation (36). Linear operations during computation are performed on
each share independently as described in Equation (37). Each non-linear operation f is
split into d + 1 shared functions f0, . . . , fd over which the following properties are defined:
correctness, non-completeness, and uniformity.

Correctness property assures that the correct result of f can be obtained after the computation:

d⊕
i=0

fi(x0, . . . , xd) = f (
d⊕

i=0

xi). (45)

Non-completeness property requires each function fi to be independent of at least one
share of each input variable, e.g.,

f0(x1, x2, . . . , xd),

f1(x0, x2, . . . , xd),

. . .

fd(x0, x1, . . . , xd−1).

(46)

For the masking scheme to protect against higher-order attacks, the property must
be extended to the d-th order non-completeness [127]: any combination of up to d shared
functions fi must be independent of at least one share of each input variable.

Similarly, as the inputs xi are uniformly shared, which is assured by generating
uniform masks, the uniformity property requires the output of the shared functions fi to be
uniformly shared as well. Unlike previous properties which can be explicitly validated,
uniformity is typically checked by using an exhaustive enumeration and conditional
probability examination. Since uniformity is often hard to achieve directly, remasking with
a fresh randomness may be necessary after the non-linear stage [128].

To eliminate the propagation of glitches, assure non-completeness when consecutive
non-linear operations are considered, and possibly split a single non-linear operation,
pipeline registers must be used between the stages. At least d + 1 shares are required
to implement a function of algebraic degree d (e.g., Rijndael/AES S-box has algebraic
degree 7). Splitting the non-linear stage (e.g., decomposing the function or computing the
S-box in a composite field) may result in functions of a smaller algebraic degree; therefore,
a smaller number of shares and lower overall overhead [123,129].

7. Attacks on Protected Implementations

Approaches to attacking protected implementations are presented in this section.
Attacks on hiding countermeasures are summarized in Section 7.1 and attacks on masking
are explained in Section 7.2.

Most of the presented techniques are typically performed as a pre-processing step
before mounting an attack. Moment-based attacks (recall Section 3) on masking can be
computed in an online and parallel fashion [130], sparing computing resources. Machine
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learning-based attacks may even be mounted on protected implementations in a same
fashion as when attacking unprotected implementations [42].

7.1. Attacks on Hiding

Different approaches were proposed to deal with hiding in time. Simple time shifts
can be overcome by using autocorrelation, i.e., a correlation of a signal with a delayed
copy of itself. More generally, a pattern near the sensitive operation can be used with
matching techniques known from digital signal processing [28] to identify the time shift
and align traces appropriately. These methods are also useful when there is no dependable
synchronization signal for measurements (trigger).

When the leakage is spread in time in a more chaotic manner, e.g., by clock jitter,
a sliding window attack may be used, where a finite number of (consecutive or not) time
samples is summed/integrated to a single value [110]. When attacking implementations
with a hiding in time countermeasure in place, this attack results in better signal-to-noise
ratio. However, because the noise is integrated as well, it is still less efficient than a direct
attack on an unprotected implementation [110].

Another example of an attack on hiding in time is the use of elastic alignment attack [131],
which utilizes dynamic time warping techniques [132] to create well-aligned traces.

Machine-learning based attacks were shown to successfully break through hiding in
time countermeasures, most importantly convolutional neural networks, thanks to their
location-scale invariance properties [57].

Similarly, different techniques were proposed for attacking hiding in amplitude coun-
termeasures. Differential logic (such as WDDL) without proper place and route constraints
can be successfully attacked by using electromagnetic analysis [133], as the attacker is
able to measure leakage from only a small part the chip. Various approaches to filter out
excessive noise (such as that created by noise generators) were also proposed [134–137],
e.g., based on wavelet transform.

7.2. Attacks on Masking

Consider a moment-based non-profiled attack (e.g., DPA or CPA). With a masking
countermeasure in place, the intermediate sensitive variable fk(xi) is split into d shares
(recall Equation (36)). Side-channel attack targeting this intermediate value, therefore,
must consider d mutually independent leakages. Such an attack is then referred to as a
higher-order, or d-th order, attack [6]. The d leakages may manifest themselves at different
times, resulting in a multivariate higher-order attack. Similarly, when the leakages manifest
at the same time, a univariate higher-order attack is mounted.

The combining function C is used to combine multiple key-independent noisy distribu-
tions to produce a single key-dependent distribution, which is then exploited by the attack.
Two different combining functions are presented in this subsection: absolute difference
combining and product combining. The centralized absolute difference combining between
two time samples oxi (t1), oxi (t2) with mean values µo(t1)

, µo(t2)
is defined as [138]

C(oxi (t1), oxi (t2)) = | (oxi (t1)− µo(t1)
)− (oxi (t2)− µo(t2)

) |, (47)

and the centralized product combining between arbitrary number of samples is defined as [8]

C(oxi (t1), . . . , oxi (td)) = ∏
k∈{1,...,d}

(oxi (tk)− µo(tk)
). (48)

The centralization, i.e., subtracting the mean, normalizes the Gaussian noise and
minimizes bias during the combining [139]. Optimal leakage function L̂ to use with
combined leakage is then combining function specific.
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Assume attacking a first-order masking scheme, i.e., a second-order attack, using
Hamming weight model. Denote the targeted intermediate variable z = fk(xi) ∈ Bn, and
let it be split in two shares s0, s1 ∈ Bn:

s0 = z⊕m, s1 = m, (49)

where m ∈ Bn is a uniform independent mask. Model the observed leakage during
processing of each share as

O0 = δ0 + HW(s0) + B0, O1 = δ1 + HW(s1) + B1, (50)

where δ0, δ1 are constant parts of the leakage, and B0, B1 ∼ N (0, σ) are zero-centered
Gaussian noise. For Hamming distance model, assume usage of z′ = z⊕ v0

1 ⊕ v1
1, m′ =

m⊕ v1
1 instead of z, m, where v0

1, v1
1 are previous states of z, m, respectively. The optimal

leakage prediction function L̂ for the centered absolute difference combining is then [139]

21−HW(z) HW(z)
(HW(z)− 1

bHW(z)
2 c

)
, (51)

i.e., a non-affine function of the Hamming weight. The optimal leakage prediction function
for the centered product combining is [139]

− 1
2

HW(z) +
n2 + n

4
+

n
2
(δ1 + δ2) + δ1δ2, (52)

i.e., a linear function of the Hamming weight. The centered product combining is therefore
well-suited for a correlation attack (CPA), where simple HW(z) predictions will show up as
a negative correlation. Assuming very noisy observations, the centered product combining
function leads to a more efficient attack than the absolute difference combining [139].
Moreover, a higher-order attack using centered product combining can be computed in
a one-pass and parallel fashion [130], instead of pre-processing the data.

As mentioned earlier, the higher-order attack can be either univariate or multivari-
ate. Multivariate attack is usually used when attacking masked software implementa-
tions [138] and may require a prior points-of-the-interest analysis (recall the template attack
in Section 4.1); otherwise, it may become very expensive in terms of both computational
power and memory. Univariate attack is suitable when the implementation leaks infor-
mation about all of the shares in the same time instant [140], which is usually the case for
hardware implementations. In such cases, the time sample will be combined with itself,
e.g., (oxi − µo)2 assuming a second-order attack and product combining. Notice that the
combining result is equal to the second central moment.

Combining the samples also results in an amplification of the noise [8]. The amount of
side-channel information necessary for a successful attack grows exponentially with the
masking order. Assuming variance of a single observation is σ2, variance of k combined
samples is approximately (σ2)k, and to distinguish between two distributions with different
means and (σ2)k variance, approximately (2σ2)k samples are necessary [8]. Therefore
a sufficient noise level is necessary for masking countermeasures to be secure [141].

Mutual information analysis is, unlike DPA or CPA, “naturally higher-order” in the
sense of examining the entire underlying distribution instead of statistical moments [49].
For a multivariate attack, there are different methods of combining multiple time samples:
(1) considering them a d-dimensional vector, (2) computing multivariate mutual informa-
tion, or (3) computing total correlation. Multi-dimensional probability density function
must then be estimated.

Machine learning-based attacks were also shown capable of exploiting higher-order
leakage [42,142] and successfully breaking masked implementations. Compared with CPA,
a machine-learning based attack might not require any alterations, and it may be performed
on both unprotected and protected implementations with no adjustments [42].
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8. Leakage Assessment

Leakage assessment methodology examines whether the implementation leaks infor-
mation. A naïve technique of testing vulnerability against side-channel attacks would be
mounting all the known attacks. Leakage-assessment methodologies offer a more general
and less computationally and time-demanding approach. Similarly to the non-profiled
attacks, the methods presented in this section are typically based on partitioning the mea-
surements and examining their distinguishability. Contrary to the attack scenario, the
evaluator in this scenario has full control over the implementation. The described tests can
be categorized as either specific or non-specific tests [143,144].

The specific tests [143] typically evaluate measurements of random uniform plain text
encryptions with a fixed key. They partition the measurements into two or more groups
according to a selected intermediate value and leakage function. For example, assuming
single-bit Hamming weight leakage (similarly to DPA in Section 3.1), the measurements are
partitioned into two groups according to the value of a bit of S-box output. Considering
Rijndael/AES, this intermediate value provides 128 different partitionings (one for each
bit of the cipher context). Other options for the intermediate value include round output
or XOR of round input and output. Distinguishability of the groups then suggests the
possibility of presence of leakage exploitable by targeting the selected intermediate value.

The non-specific tests [143,144] do not target a specific intermediate value. Instead,
e.g., distinguishability between two groups containing measurements of an encryption of
either random uniform plain text, or of pre-selected fixed plaintext, is tested. Such tests
are referred to as random vs. fixed tests. The other choice is a fixed vs. fixed test. In such
tests, both groups must be measured in a randomly interleaved fashion during a single
evaluation to prevent false results, e.g., due to environmental noise or varying device
temperature [144]. Distinguishability of the two groups once again suggests information
leakage. Non-specific tests are more sensitive and general than specific tests, and they
provide only limited information about the leakage origin.

Various statistical tools can be used to test the distinguishability of the groups. Method-
ologies based on Welch’s t-test and Pearson’s χ2 test are described in Sections 8.1 and 8.2.
A deep learning-based approach is described in Section 8.3.

The measurement setup plays a crucial role in leakage evaluation. Test equipment (e.g.,
oscilloscope) with sufficient bandwidth, sampling rate and resolution must be used [143],
as these and other parameters have a direct impact on potential attack success [30]. A pre-
amplifier may be used to ensure the full range of the ADC is utilized.

Relevant pre-processing should also be performed, especially when evaluating secured
implementations (see Section 7). The role of evaluator is always creative and non-trivial in
the sense that the evaluator should consider all possible techniques the attacker may use to
increase the chance of attack success. Results of the presented methods must be interpreted
carefully, with possible false positives and false negatives in mind [141].

8.1. Welch’s t-Test

A two-tailed Welch’s t-test can be used to examine a null hypothesis that two groups’
means are equal, and can be successfully used in leakage assessment [143,144]. The uni-
variate statistic t is computed for the two groups, in every sampling point independently:

t =
X̄1 − X̄2√

s2
1

N1
+

s2
2

N2

, (53)

where X̄1, X̄2 are sample means, s2
1, s2

2 are sample standard deviations, and N1, N2 are
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cardinalities of the first and the second group, respectively. The number of degrees of
freedom v can be estimated by using

v ≈
(

s2
1

N1
+

s2
2

N2
)2

(
s2
1

N1
)2

N1−1 +
(

s2
2

N2
)2

N2−1

. (54)

Under the null hypothesis, the statistic t follows Student’s t-distribution with v degrees
of freedom. The null hypothesis is rejected according to the distribution and selected signif-
icance level α. For sufficiently large n, the t-distribution can be satisfactorily approximated
by normal distribution. In side-channel analysis, the threshold ±4.5 or ±5 for the t-value
is often considered [141,143], which roughly corresponds to significance level α ≤ 10−5.
Rejecting the null hypothesis suggests that the two groups have different means, and
therefore an information leakage. Not rejecting the null hypothesis suggests nothing; most
importantly, it does not suggest there is no leakage.

The Welch’s t-test is a univariate moment-based statistic, similar to statistics used in
DPA or CPA attacks (Sections 3.1 and 3.3). The measurements therefore must be aligned. To
evaluate leakage exploitable by higher-order attacks, e.g., when evaluating a higher-order
masking scheme, relevant (pre-)processing must be performed [144], similarly to the attacks.
This includes a use of either univariate or multivariate combining function as described
in Section 7.2.

8.2. χ2 Test

Pearson’s χ2 test of independence tests a null hypothesis that two or more variables
are independent, and are well-suited for leakage assessment [145]. Unlike the t-test, χ2 is
a nonparametric test: instead of statistical moments, whole underlying distributions are
considered. In this subsection, the univariate test is described first, as in case of the t-test,
i.e., the test is performed at every sampling point independently.

A two-row (r = 2) contingency table F is created by using histograms of both groups
(assuming aligned histograms, i.e., the same range and width of bins), where the number
of columns c corresponds to the number of bins. Columns containing only zeros should be
eliminated to decrease number of degrees of freedom. Let Fi,j be the frequency of each cell,
and N be the number of all measurements. The expected frequency of each cell Ei,j is then
computed as

Ei,j =
(∑c−1

k=0 Fi,k) · (∑r−1
k=0 Fk,j)

N
, (55)

the χ2 statistic x as

x =
r−1

∑
i=0

c−1

∑
j=0

(Fi,j − Ei,j)
2

Ei,j
, (56)

and the number of degrees of freedom v as

v = (c− 1) · (r− 1). (57)

Under the null hypothesis, the statistic x follows χ2 distribution with v degrees
of freedom. The null hypothesis is rejected according to the distribution and selected
significance level α, similarly to Welch’s t-test (Section 8.1). Once again, rejection of the null
hypothesis suggests information leakage.

Because χ2 is a nonparametric test, univariate higher-order leakage is considered
inherently. To extend the test to a multivariate case, either the combining function can be
utilized (as in case of the t-test), or a multivariate histogram can be used. The χ2 test also
enables more than two groups to be used in the test, and it can be also used in an attack
scenario similar to the t-test in DPA [145].
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8.3. Deep Learning Leakage Assessment

The distinguishability of the two groups can also be successfully tested by using a deep
learning-based classifier [146]. Assuming there is exploitable leakage, the classifier should
be able to learn distinctive features of measurements in each group.

First, the measurements get standardized by subtracting the mean value and then
dividing it by the standard deviation, at every sampling point independently. Henceforth,
for the classifier, the measurements are considered multivariate vectors. The data are
split into training and evaluating sets. The leakage assessment only examines leakage in
measurements used in the training stage.

Under a null hypothesis that the classifier did not recognize and learn any features, the
number of its correct guesses on the evaluating set should follow binomial distribution with
probability p = 1

2 . The null hypothesis is rejected once again according to the distribution
and selected significance level.

Deep learning leakage assessment provides a powerful tool thanks to its multivariate
nature, ability to identify distinctive features, and its detection sensitivity, which outper-
forms both Welch’s t-test and χ2 test [146]. It displays similar characteristics as machine
learning-based attacks (Sections 3.6 and 4.2).

9. Discussion

In this paper, we provided an insight into the side-channel leakage origin and measure-
ments (Section 2) and we presented both non-profiled (Section 3) and profiled (Section 4) attacks
as well as attacks on protected implementations with different countermeasures (Section 7).

The non-profiled attacks remain the most powerful in the sense that the attacker can
reveal sensitive information, such as cipher keys, with only a little knowledge about the
implementation. Correlation power analysis (CPA) is the most effective and efficient attack,
assuming the device under attack leaks side-channel information in a “well-behaved and
the most common manner”, i.e., the leakage follows a linear Hamming weight/distance
leakage model and the observation channel follows the normal distribution. On the other
hand, mutual information analysis (MIA) relaxes all these assumptions and it is capable of
revealing sensitive information without further knowledge about the leakage model. Unlike
CPA, which exploits statistical moments such as mean or (co)variance, the MIA works with
probability density estimates, thus considering all the information available. However, its
generality is typically at the cost of efficiency when simpler attacks are possible to mount.
Contrary to the CPA, its effectivity and efficiency strongly depend on the probability density
estimation approach and its parameters. Considering attacks on protected implementation,
the MIA may become more handy compared to the CPA, as it allows for easy multivariate
combining and it inherently considers higher-order univariate leakage, thus not being
as susceptible to noise amplification. Therefore, in some cases of protected hardware
implementations, it may be able to reveal sensitive information much more efficiently
than the CPA [141]. Other non-profiled attacks, such as Kolmogorov–Smirnov analysis
(KSA), remain mostly of theoretical interest. Namely, the KSA was studied and used
to demonstrate a direct relationship between susceptibility to side-channel attacks and
differential cryptoanalysis. Most recently, non-profiled machine learning attacks have
emerged, allowing the exploitation of the advantages of neural networks as discussed in
the next paragraph for profiled attacks.

The profiled attacks require the attacker to have a fully controlled copy of the device
under attack at her disposal. The attacker then examines the leakage characteristics and
tailors the attack to the specific device. Under this assumption, the profiled attacks become
much more effective and efficient than the non-profiled attacks; where hundreds of mea-
surements are necessary for the non-profiled attack to succeed, the profiled attack may
reveal sensitive information with as little as a single measurement. The template attack
uses multivariate Gaussian distribution to model the leakage and to mount the attack.
Recently, many machine learning algorithms have been used to model leakage. Their main
advantage, most prominently in the case of convolutional neural networks, is a scale and
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translation invariance and their ability to attack protected implementations without further
adjustments of the attack. The main disadvantage of the machine learning attacks lies
currently in their limited explainability.

In the Section 5, we presented different metrics related to side-channel analysis.
The most prominent and widely used metrics are the success rate and the closely re-
lated guessing entropy, which both demonstrate the practical effectivity and efficiency
of the side-channel attack. We further presented more theoretical metrics such as the
distinguishing margin and the confusion coefficient, which were used to demonstrate the
aforementioned relationship between physical and theoretical attacks on cryptography: the
more difficult it is to break a cipher by using differential cryptanalysis, the easier it is to
break it by using side-channel analysis.

We also presented countermeasures (Section 6) against side-channel attacks. These are
typically divided into two categories: hiding and masking. While hiding aims to conceal the
leaking information in noise, masking aims to randomize the working variables by splitting
them into multiple variables and thus making the attack significantly more difficult. Attacking
the split variable typically requires more sophisticated attacks (including sample combining),
which often result in noise amplification and exponential growth of the attack complexity. It is
therefore beneficial to use both hiding and masking countermeasures simultaneously, as the
additional noise introduced by the hiding countermeasures significantly boosts the security of
masking countermeasures. However, most countermeasures come with non-negligible overhead
(in time or area or both) and their implementation often comes at high costs. The selection of
appropriate countermeasures and their implementation is therefore highly use-case-dependent
with criticality and cost in mind.

Lastly, we presented leakage assessment strategies in Section 8. These are used
to evaluate protected implementations and their security by both manufacturers and
certification laboratories. As mounting all the possible attacks is infeasible, the leakage
assessment uses more general approaches such as the non-specific tests to evaluate whether
statistically significant side-channel leakage can be detected or not. In the case of the
detected leakage, there is still no evidence of its practical exploitability. But even more
importantly, when no leakage is detected, this still cannot be used as proof of security.
While the leakage assessment provides beneficial insights, a thorough examination of the
secured implementation by a skilled engineer is always necessary.

10. Conclusions

Side-channel analysis has become a widely recognized threat in the last twenty years.
It has evolved from simple attacks such as simple or differential power analysis to a com-
plex research field of its own, having a direct impact even on the semiconductor man-
ufacturing technology itself. Nowadays, devices used in both commercial and govern-
ment sectors must have appropriate certifications to prove themselves secure against
side-channel attacks.

In this survey, we described non-invasive vertical side-channel attacks, including ma-
chine learning-based attacks, countermeasures against such attacks, and leakage-assessment
methodologies. We provided a taxonomy of both attacks and countermeasures with re-
spect to both their theoretical background and the historical context, and we described the
advantages and disadvantages of different approaches. In addition to the matter described
in this paper, the side-channel analysis further includes horizontal attacks, invasive attacks,
or active attacks such as fault injection, which are out of the scope of this paper. Because the
countermeasures against all of these attacks are typically expensive and their effectiveness
is being put into question with each newly presented attack, further research in the field of
side-channel analysis is essential.

Future work in the field of side-channel analysis most importantly consists of security
evaluation of protected implementations and security verification. Moreover, as new algo-
rithms are still being proposed (e.g., post-quantum algorithms, light-weight cryptography),
their side-channel security must be evaluated, attack vectors must be identified and proper
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countermeasures proposed. A general approach to side-channel security remains a great
challenge due to a consistent back-and-forth between attackers and security engineers.
Due to the general inability to foresee all possible threats and weaknesses, the security
(including the side-channel security) will always remain a never-ending process instead of
the final product.
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Abbreviations
The following abbreviations are used in this manuscript:

Cryptography and Side-Channel Analysis related

AES Advanced Encryption Standard
CPA Correlation Power Analysis
DDLA Differential Deep Learning Analysis
DLLA Deep Learning Leakage Assessment
DM Distinguishing Margin
DPA Differential Power Analysis
GE Guessing Entropy
HD Hamming Distance
HW Hamming weight
ID Identity
iKSA Inter-class Kolmogorov-Smirnov Analysis
KSA Kolmogorov-Smirnov Analysis
MIA Mutual Information Analysis
PPA Partitioning Power Analysis
RSA Rivest–Shamir–Adleman cryptosystem
SR Success Rate
TA Template Attack

Digital Design and Electronics related

AC Alternating Current
ADC Analog-to-Digital Converter
ARM Advanced RISC (Reduced Instruction Set Computer) Machines
ASIC Application-Specific Integrated Circuit
CLK Clock
CMOS Complementary Metal–Oxide–Semiconductor
DC Direct Current
EM Electromagnetic
FPGA Field-Programmable Gate Array
GND Ground
HLS High-Level Synthesis
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
NMOS N-channel Metal–Oxide–Silicon Transistor
PMOS P-channel Metal–Oxide–Silicon Transistor
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RAM Random Access Memory
RTL Register-Transfer Level

SABL Sense Amplifier-based Logic
SDDL Simple Dynamic Differential Logic
SNR Signal-to-Noise Ratio

VHDL
VHSIC (Very High-Speed Integrated Circuits Program) Hardware
Description Language

WDDL Wave Dynamic Differential Logic
XOR Exclusive OR

Miscellaneous

CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
GPU Graphics Processing Unit
ML Machine Learning
MLP Multilayer Perceptron
NIST National Institute of Standards and Technology
OpenCL Open Computing Language
OpenMP Open Multi-Processing
SVM Support Vector Machine
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