
Optimization of Pearson correlation coefficient
calculation for DPA and comparison of different

approaches
Petr Socha, Vojtěch Miškovský, Hana Kubátová, Martin Novotný

Czech Technical University in Prague
Faculty of Information Technology

Department of Digital Design
{sochapet,miskovoj,kubatova,novotnym}@fit.cvut.cz

Abstract—Differential power analysis (DPA) is one of the most
common side channel attacks. To perform this attack we need to
calculate a large amount of correlation coefficients. This amount
is even higher when attacking FPGAs or ASICs, for higher order
attacks and especially for attacking DPA protected devices. This
article explains different approaches to the calculation of corre-
lations, describes our implementation of these approaches and
presents a detailed comparison considering their performance
and their properties for a practical usage.

Index Terms—Differential Power Analysis, DPA, Pearson cor-
relation coefficient, AES, Side Channel Attack

I. INTRODUCTION

Side channel attack (SCA) is a common threat for cryp-
tographic devices. Even modern cryptographic systems based
on mathematically secure ciphers like AES can be vulnerable
to SCA.

One of the most commonly used SCAs is differential power
analysis (DPA) [1], and especially its correlation based variant
(CPA) [2]. This kind of attack is based on measuring the power
traces of a cryptographic device during multiple encryptions,
with random plain texts, and then computing correlations
between the measured power consumption traces and a chosen
power model based on a plain/cipher text and possible values
of a key. There are also other similar attacks based on other
quantities (e.g. electromagnetic radiation) [3].

To perform the attack against modern low-power devices,
we need to obtain a huge amount of power traces. Also, higher
order DPA demands more power traces than the first order
one [4], [5]. Afterwards, the correlation calculation can get
highly time demanding.

In this paper we compare several methods of Pearson
correlation coeficient computation on large amount of data and
discuss their properties. In Section II we present works related
to this topic. In Section III we introduce the mathematical
background for each method and discuss its advantages and
disadvantages. Efficient implementations of these methods are
proposed in Section IV. A comparison of the performance
of the methods for attacking AES cipher is presented in
Section V. We conclude our results in Section VI and propose
some possible future improvements in Section VII.

II. RELATED WORK

In [1] and [6], differential power analysis was introduced as
a side channel attack posing a threat e.g. for implementations
of DES or AES.

Enhanced correlation variant of differential power analysis,
called Correlation Power Analysis (CPA), was introduced in
[7] and [8]. Proposed method attacks a byte of the key at
a time using correlation coefficients.

Several implementations of differential power analysis at-
tacks have been published (e.g. [9], [10]), however used
methods of computing correlation coefficients may suffer from
a poor numerical stability [11].

In [12], various aspects of CPA are discussed, some al-
gorithms are suggested and compared, however presented
methods may be numerically unstable as well.

A numerically stable approach of computing correlations for
side channel attacks is introduced in [13], however no imple-
mentation or performance comparison of discussed methods
is presented.

To the best of our knowledge, no comparison of hereby
presented Pearson correlation coefficient computation meth-
ods, that would provide tangible figures and discuss their
properties, is available in open literature. In the following
sections, we describe the theoretical background of these
methods, discuss their advances and limitations and present
the experimental work regarding their performance.

III. CORRELATION

In the process of obtaining a keyguess, a correlation coeffi-
cient between each sample and an expected power leakage
(hereafter referred to as power model) must be computed.
Since we assume a linear dependence between the measured
variables [7], Pearson correlation coefficient is used.

The Pearson correlation coefficient between random vari-
ables X and Y is defined as follows [14]:

ρX,Y =
cov(X,Y)

σXσY
, (1)

with cov(X,Y) being the covariance between variables X
and Y , and σX , σY being standard deviations of vari-
ables X , Y respectively.

Different approaches to implementing a calculation of cor-
relation coefficient on a statistical sample will be described in
following subsections, since the selected method of processing
the data has a significant effect on both time and memory
performance, as well as on some other properties of the
calculation.

A. Two pass approach

Given that cov(X,Y) = E[(X − µX)(Y − µY)] and σ2
X =

E[(X−µX)2], with µX , µY being means of X,Y respectively
[14], we can express the Pearson correlation coefficient in
a format more suitable for the processing statistical sample:

ρX,Y =
E[(X − µX)(Y − µY)]√

E[(X − µX)2]
√
E[(Y − µY)2]

. (2)

Based on formula (2), a two pass algorithm for the correla-
tion computation can be easily designed. When the correlation
is computed on a statistical sample, letter r will be used instead
of letter ρ. Assuming we have datasets X = {x1, ..., xn} and
Y = {y1, ..., yn} with cardinalities n and sample means x and
y, we can write:

rX,Y =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2
√√√√ n∑

i=1

(yi − y)2
. (3)

The first time the data sets are passed, the sample means
x and y are calculated. With the second pass, the variances
(thus standard deviations) and the covariance are calculated,
allowing to easily compute the final correlation coefficients.

Unless the amount of statistical samples n is very large,
this method is numerically stable and it is giving accurate
results [11]. However, the two (or more) pass computation is
undesirable, especially for large data sets.

For once, the time necessary for the calculation grows with
more statistical samples in the set, thus the time performance
issue gets significant where more power traces may be needed
(on FPGAs, when processing higher order attack, etc.) [12].
Multiple passing algorithms are impractical in this case, since
the distributed memory access may dominate the computation
time.

Also, the final application asks for the ability to stop
the computation, check the results and in the case of need,
to continue the computation with more measured samples,
allowing e.g. to find out the number of samples nessesary to
obtain the valid keyguess.

A new added sample in this case requires pass through all
the already processed data once again.

B. Naive one pass approach

When we expand the formula (2) using the linearity of the
expectation and the variance [14], we obtain:

ρX,Y =
E[XY]− E[X]E[Y]√

E[X2]− E[X]2
√
E[Y 2]− E[Y]2

, (4)

giving us a convenient one pass approach to the computation
of the correlation coefficient:

rX,Y =

n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi√√√√n

n∑
i=1

x2i − (

n∑
i=1

xi)
2

√√√√n

n∑
i=1

y2i − (

n∑
i=1

yi)
2

. (5)

In a single pass through all the data (statistical samples), the
sums

∑n
i=1 xiyi,

∑n
i=1 xi,

∑n
i=1 x

2
i ,

∑n
i=1 yi and

∑n
i=1 y

2
i

are computed, allowing to easily calculate the sample means,
the variances and the covariance, and finally the correlation
coefficients.

This approach promises a better time performance of the
implemented calculation, since all the data need to be accessed
only once. Also, since the summation of disjunct pools of
statistical samples (measured power traces) is an indepen-
dent operation, this kind of one pass calculation allows for
a straightforward parallelization.

Since the critical part of the computation is the summation,
the algorithm can be stopped at any time, providing the answer
based on processed samples, and then resumed with a little
extra effort.

However, this method suffers from a poor numerical sta-
bility [11]. Consider the denominator of the formula (5),
where the sample variance is computed as a difference of two
positive floating point numbers. Due to this subtraction, severe
cancellations may occur, leaving the result dominated by a
roundoff. A similar situation may occur in the numerator of
the formula (5).

C. Incremental one pass approach

A poor numerical stability of this naive one pass algorithm,
combined with the necessity to process lot of statistical sam-
ples in a reasonable time, demands a better approach. This new
approach should preferably maintain both the time complexity
of naive one pass algorithm and the numerical stability of the
two pass algorithm.

Let’s assume that we have datasets X = {x1, ..., xn} and
Y = {y1, ..., yn} with cardinalities n. Let’s assume that X ′ =
X ∪ {xn+1} and Y ′ = Y ∪ {yn+1} are the datasets created
by adding some new samples to the sets.

A recurrent formula for the sample mean can be easily
obtained and is widely known:

x′ = x+
xn+1 − x
n+ 1

. (6)

Now, let’s assume we have the sample variance defined as
σ2
X = 1

n

∑n
i=1(xi − x)2, where n is the cardinality of the

dataset. Let M2,X =
∑n

i=1(xi−x)2, therefore σ2
X = 1

nM2,X .
For the dataset X ′ created by adding a new statistical sample

to the set X , we would like to calculate the variance as
σ2
X′ = 1

n+1M2,X′ . Using the formula (6), a recurrent formula
for the sum M2,X′ can be directly used [15]:

M2,X′ =M2,X + (xx+1 − x)(xx+1 − x′). (7)

For the covariance, a similar recurrent formula exists. As-
sume a dataset consisting of pairs S = {(xi, yi)|xi ∈ X,
yi ∈ Y }, representing pair of random variables X and Y , with
the cardinality n and the sample means x and y. The sample
covariance is defined as cov(X,Y) = 1

n

∑n
i=1(xi−x)(yi−y).

Let C2,S =
∑n

i=1(xi− x)(yi− y), then cov(X,Y) = 1
nC2,S .

Let’s assume that S′ = S ∪ {(xn+1, yn+1)} = {(x′i, y′i)|
x′i ∈ X ′, y′i ∈ Y ′} is a new dataset created by adding a new
pair of samples. The covariance of the dataset S′ can be then
computed as cov(X ′, Y ′) = 1

nC2,S′ , where [16]:

C2,S′ = C2,S +
n

n+ 1
(xn+1 − x)(yn+1 − y). (8)

Substituting the sums in the formula (3) for C2,S , M2,X

and M2,Y , we get the final correlation coefficient:

rX,Y =
C2,S√

M2,X

√
M2,Y

. (9)

Using these recurrent formulas, one can calculate correlation
coefficients, even for a large number of samples (measured
power traces), assuring numerical stability of the computa-
tion [16].

This approach, allowing an online and direct update of all
the values every time a new sample is added to the dataset, is
well-suited for CPUs, as well as for streaming processors, e.g.
graphical processing units. This algorithm can be parallelized
just as easily, as the naive one pass algorithm.

IV. IMPLEMENTATION

Attacking AES implementation using the correlation variant
of differential power analysis consists of attacking each byte
of the key separately.

Each of n measurements of power traces is done with
m samples per trace, resulting in a vector of random variables
X = [X1, ..., Xm], one for each sample.

The plain/cipher text used while measuring the traces, after
being processed by an appropriate power model, results in
a vector of variables Y = [Y1, ..., Y256], one for each key
candidate.

To obtain a valid keyguess, the correlation coefficient for
each sample per trace and each key candidate must be com-
puted. The result of the algorithm is the correlation matrix C
of size m×256, where Ci,j = rXi,Yj , computed for each byte
of keyguess separately.

The keyguess can be found in the correlation matrix C sim-
ply by searching for the maximal and the minimal correlation
coefficient, or by some other statistical method.

A. Two pass approach

As stated before, the two pass algorithm calculates the
sample means first. By going through all the data, a vector
X = [x1, ..., xm] of m sample means, one for each sample per
trace, and a vector Y = [y1, ..., y256] of 256 sample means,
one for each key candidate, are calculated.

In the second pass, with the precomputed sample means,
vectors containing variances σ2

X = [σ2
X1
, ..., σ2

Xm
] and σ2

Y =
[σ2

Y1
, ..., σ2

Y256
], as well as a covariance matrix K of size

m× 256, where Ki,j = cov(Xi, Yj), are easily computed,
from which the final correlation matrix C is easily derived.

Unfortunately, adding new samples into the datasets (adding
more power traces) results in running the whole computation
from the very beginning, making this implementation unsuit-
able for many kinds of applications, for example measuring
amount of traces necessary to obtain a keyguess. Also, reading
all the data twice leads to an expensive distributed memory
access.

The whole process is repeated for each byte of the keyguess
with the same measured power traces (X), but a different
power model, based on the plain/cipher text used (Y).

Our early implementation of the two pass algorithm, written
in C++ using Standard Template Library (STL), including the
power-model computation, while faster than some universal
mathematical software (Matlab, Mathematica) [17], is still
unbearably slow for a large amount of traces.

B. Naive one pass approach

In a single pass through the measured data and power
model, a vector of sums SX = [

∑
k x1k , ...,

∑
k xmk

] of
power traces for each sample and a vector of their powers
SX2 = [

∑
k x

2
1k
, ...,

∑
k x

2
mk

], as well as vectors of sums of
the power model SY = [

∑
k y1k , ...,

∑
k y256k] and SY2 =

[
∑

k y
2
1k
, ...,

∑
k y

2
256k

] are computed, as well as a matrix of
sums SXY of size m×256, where SXYi,j

=
∑

k xikyjk . From
these, based on the formula (5), the final correlation matrix C
is easily computed.

This kind of approach offers much better time and memory
performance, given an online character of the algorithm. The
bottleneck of the whole computation is a multiplication and a
summation while creating the matrix SXY. Fine-grain paral-
lelization of this operation results in a very good scalability of
this algorithm. The minimum amount of the working memory
needed is limited only by a size of vectors and the matrix of
sums, mentioned above.

Our implementation, written in C/C++ and using Open
Multi-Processing API (OpenMP), gets much faster than our
two pass implementation, also thanks to the better memory
usage. The final correlation computation was separated from
the power model computation, where a rearrangement of
the data for a better correlation computation performance
also happens. The time performance of the power model
computation is well satisfactory on its own, as well as it is
scalable.

The properties of the one pass algorithm allow processing
a certain amount of samples, giving the answer and contin-
uing the calculation without the need to start from the very
beginning, unlike two pass algorithm.

However, as stated earlier, this algorithm can suffer from
a poor numerical stability, mostly due to the subtractions.

C. Incremental one pass approach

The incremental one pass algorithm keeps a matrix and vec-
tors of the same values as the two pass algorithm does (unlike
naive one pass algorithm, which keeps sums of powers), but

rather than computing them in two passes, it uses recurrent
update formulas, mentioned earlier.

In a one pass, sample mean vectors X = [x1, ..., xm] and
Y = [y1, ..., y256] are calculated using the formula (??). In the
same pass, variance vectors M2,X = [M2,X1

, ...,M2,Xm
] and

M2,Y = [M2,Y1
, ...,M2,Y256

] are computed using formulas (6)
and (7) and the covariance matrix K, where Ki,j = C2,Si,j

and Si,j = {(x, y)|x ∈ Xi, y ∈ Yj}, gets computed using
the formula (8). The final matrix C with Pearson correlation
coefficients is then obtained using the formula (9).

While this algorithm is numerically stable [16], it keeps the
online character of the naive one pass algorithm and allows
optimized distributed memory access and thus a good time
performance, as well as a good memory space performance.
The bottleneck of the implementation remains in the update
of the covariance matrix K, allowing to parallelize easily (e.g.
using OpenMP).

The algorithm is also capable of stopping, giving out the
results and continuing the computation with more samples,
thus allowing to find out the number of traces needed to obtain
the valid keyguess, etc.

V. RESULTS

In this section, we will compare the time performance
and the scalability of implementations stated earlier. All the
time measurements were done on machine equipped with
Intel i5 2400 quad core processor at 3.3GHz, 8GB DDR3
667MHz working memory, SSD hard drive and base instal-
lation of 64bit Arch Linux. All the implementations were
compiled using GNU C Compiler with level 3 optimizations
enabled. Wall-clock time is presented and hereafter referred to
as running time. Parallel computational threads are hereafter
referred to as threads.

A. Two pass approach

Our original two pass implementation, written in C++ using
Standard Template Library (STL), combines the computation
of correlations and the power model computation. The library
containers and a poor memory cache usage, caused by the
organization of the computation, lead to a very poor time
performance.

Table I presents the running time for a various numbers of
power traces and samples per trace, using a single thread.

Table I: RUNNING TIME OF THE TWO PASS ALGORITHM FOR
A VARIOUS NUMBERS OF POWER TRACES AND SAMPLES, IN
SECONDS

of traces /
of samples per trace 100 1k 10k 100k

10 0.009 0.127 1.882 73.56
100 0.084 1.361 16.70 794.5

1,000 0.704 11.58 149.6 6 964

As can be seen, for 100,000 power traces and 1,000 samples
per trace, the computing time gets unbearably high. This leads
to the need for other implementations.

0.1

1

10

100

1k

10k

100 1k 10k 100k

ru
nn

in
g

tim
e

[s
]

of power traces

Two pass alg., 1 thread
Naive one pass alg., 1 thread

Naive one pass alg., 2 threads
Naive one pass alg., 4 threads

Figure 1: Comparison of the time performance of the two
pass and the naive one pass algorithm for a various number
of power traces, 1,000 samples per trace, and in a case of the
naive one pass algorithm, a various number of threads

B. Naive one pass approach

The optimized naive one pass algorithm, implemented in
C language, takes the measured data and the pre-computed
power model (see Section V-D), and results with the correla-
tion matrix for each byte of keyguess, and a keyguess based
on the max/min correlation coefficient.

Since the naive one pass algorithm is well parallelizable, our
implementation uses Open Multi-Processing API (OpenMP) to
achieve better time performance.

Tables II and III present the running time for a various
number of power traces, samples per trace and number of
threads.

As can be seen, the naive one pass algorithm has a good
scalability. Also, the computation time grows linearly with the
number of traces.

Table II: RUNNING TIME OF THE NAIVE ONE PASS ALGO-
RITHM FOR A VARIOUS NUMBER OF POWER TRACES AND
1,000 SAMPLES PER TRACE, IN SECONDS

of traces /
of threads 100 1k 10k 100k 1M

1 0.253 2.035 19.80 198.7 2006
2 0.162 1.097 10.42 103.7 1049
4 0.116 0.617 5.648 56.47 587.7

Table III: RUNNING TIME OF THE NAIVE ONE PASS ALGO-
RITHM FOR A VARIOUS NUMBER OF SAMPLES PER TRACE
AND 100,000 POWER TRACES, IN SECONDS

of samples per trace /
of threads 10 100 1,000

1 2.616 19.53 198.7
2 2.165 10.93 103.8
4 2.271 6.795 56.47

The scalability of the algorithm gets better with a higher
number of samples per a trace. This is due to the fine grain
parallelism, implemented over the computation of the matrix
sized m× 256, where m is the number of samples per trace.

Figure 1 demonstrates the scalability of the naive one pass
algorithm. Compared to our original two pass algorithm, our
implementation of the naive one pass algorithm gets up to
35× faster when processing 100,000 power traces with 1,000
samples per trace.

C. Incremental one pass approach

Our implementation of the incremental one pass algorithm,
also written in C language, has very similar characteristics, as
the naive one pass algorithm.

Tables IV and V present the running time of the incremental
one pass algorithm for a various amount of power traces,
samples per trace and threads.

Table IV: RUNNING TIME OF THE INCREMENTAL ONE PASS
ALGORITHM FOR A VARIOUS NUMBER OF POWER TRACES
AND 1,000 SAMPLES PER TRACE, IN SECONDS

of traces /
of threads 100 1k 10k 100k 1M

1 0.292 2.435 23.75 236.7 2383
2 0.184 1.320 12.69 124.9 1267
4 0.132 0.790 7.134 69.52 719.1

Table V: RUNNING TIME OF THE INCREMENTAL ONE PASS
ALGORITHM FOR A VARIOUS NUMBER OF SAMPLES PER
TRACE AND 100,000 POWER TRACES, IN SECONDS

of samples per trace /
of threads 10 100 1,000

1 4.074 24.69 236.7
2 3.720 14.43 124.9
4 3.707 10.99 69.52

As can be seen on Figure 2, the incremental algorithm is
approximately 1.2× slower, than the naive one pass algorithm.

D. Separate power model computation

Our original two pass implementation computes both power
leakage model and the correlation coefficients. For the one
pass implementations, we have separated the power model
computation from the correlation computation.

0.1

1

10

100

1k

10k

100 1k 10k 100k 1M

ru
nn

in
g

tim
e

[s
]

of power traces

Incr. one pass alg., 1 thread
Naive one pass alg., 1 thread
Incr. one pass alg., 4 threads

Naive one pass alg., 4 threads

Figure 2: Comparison of the time performance of the naive
and the incremental algorithm for a various number of power
traces and 1,000 samples per trace, using 1 or 4 threads

The power model computation implementation takes the
plain/cipher text, used while measuring, and results with pre-
computed power model organized for the best correlation
computation performance. Its running time depends linearly
on the number of power traces and the scalability is quite
satisfactory.

Table VI: RUNNING TIME OF THE POWER MODEL PRECOM-
PUTATION, IN SECONDS

of traces /
of threads 100 1k 10k 100k 1M

1 0.005 0.052 0.509 5.097 49.80
2 0.002 0.027 0.266 2.665 25.22
4 0.003 0.015 0.141 1.355 13.13

In comparison with correlation coefficients computation,
one can neglect the power leakage model computation time
as unsignificant, as can be seen in Table VI.

VI. CONCLUSIONS

We have compared three algorithms for calculating Pearson
correlation coefficients of two large matrices. This calculation
is necessary for performing the correlation based DPA. The
comparison was based on both mathematical and performance
properties.

A simple two pass algorithm proved to be slow, high
memory demanding and not well parallelizable. Compared to
that, a naive one pass algorithm is much faster, low memory
demanding and well paralellizable, but not numerically stable.

Finally, we presented incremental version of the one pass
algorithm, which is, unlike the naive one pass algorithm,
numerically stable, while being only about 20% slower. This
incremental version of the one pass algorithm also preserves
other advantages, including low memory demands, satisfactory
scalability and an ability to resume the stopped calculation
with more added power traces.

While many researches may still use straightforward, two
pass algorithm, or numerically unstable naive one pass al-
gorithm, our comparison proves the incremental one pass
algorithm to be the best choice for researchers who are
mounting DPA attack on any cryptographic device. We have
not found any such comparison, providing tangible figures, in
open literature.

The incremental one pass implementation helps us to speed
up DPA significantly. It also allows for an analysis of an
unlimited amount of power traces thanks to its constant
memory demands. These properties may be further exploited
e.g. for higher order attacks, where more power traces are
necessary for obtaining a valid keyguess compared to the first
order attack, or for attacking cryptographic devices secured
against DPA.

VII. FUTURE WORK

Since the incremental one pass algorithm, using recurrent
formulas stated in this work, is numerically stable and well
suited for stream processing, it could be well implemented
on Graphical Processing Units (GPUs). We plan to use Open
Computing Language (OpenCL) or CUDA and compare all
results obtained using hereby presented methods. We expect
a better time performance and an expansion of usability of
the proposed methods for side channel attacks based on a
correlation, especially DPA.

Also, our implementation will be released to public, as a part
of DPA software toolkit, allowing anyone for further usage and
improvements.

ACKNOWLEDGMENT

This research has been partially supported by the grant
GA16-05179S of the Czech Grant Agency, ”Fault-Tolerant
and Attack-Resistant Architectures Based on Programmable
Devices: Research of Interplay and Common Features” (2016-
2018) and CTU project SGS17/017/OHK3/1T/18.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, Differential Power Analysis. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[2] M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart, Power Analysis,
What Is Now Possible... Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 489–502.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security. Springer, 2001, pp. 200–210.

[4] T. S. Messerges, “Using second-order power analysis to attack dpa resis-
tant software,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2000, pp. 238–251.

[5] J. Waddle and D. Wagner, “Towards efficient second-order power
analysis,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2004, pp. 1–15.

[6] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of
power analysis attacks on smartcards.” Smartcard, vol. 99, pp. 151–161,
1999.

[7] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2004, pp. 16–29.

[8] T.-H. Le, J. Clédière, C. Canovas, B. Robisson, C. Servière, and J.-L.
Lacoume, “A proposition for correlation power analysis enhancement,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2006, pp. 174–186.

[9] K. B. Loğoğlu and T. K. Ateş, “Speeding-up pearson correlation coef-
ficient calculation on graphical processing units,” in Signal Processing
and Communications Applications Conference (SIU), 2010 IEEE 18th.
IEEE, 2010, pp. 840–843.

[10] H. Gamaarachchi, R. Ragel, and D. Jayasinghe, “Accelerating correlation
power analysis using graphics processing units (gpus),” in Information
and Automation for Sustainability (ICIAfS), 2014 7th International
Conference on. IEEE, 2014, pp. 1–6.

[11] N. J. Higham, Accuracy and stability of numerical algorithms. Siam,
2002.

[12] P. Bottinelli and J. W. Bos, “Computational aspects of correlation power
analysis,” Journal of Cryptographic Engineering, pp. 1–15, 2015.

[13] T. Schneider, A. Moradi, and T. Güneysu, “Robust and one-pass parallel
computation of correlation-based attacks at arbitrary order,” in Inter-
national Workshop on Constructive Side-Channel Analysis and Secure
Design. Springer, 2016, pp. 199–217.

[14] F. E. Croxton and D. J. Cowden, Applied general statistics. Prentice-
Hall, 1940.

[15] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Updating formulae and
a pairwise algorithm for computing sample variances,” in COMPSTAT
1982 5th Symposium held at Toulouse 1982. Springer, 1982, pp. 30–41.

[16] P. Pébay, “Formulas for robust, one-pass parallel computation of
covariances and arbitrary-order statistical moments,” Sandia Report
SAND2008-6212, Sandia National Laboratories, vol. 94, 2008.

[17] V. Miškovský, H. Kubátová, and M. Novotný, “Influence of fault-tolerant
design methods on differential power analysis resistance of aes cipher:
Methodics and challenges,” in Embedded Computing (MECO), 2016 5th
Mediterranean Conference on. IEEE, 2016, pp. 14–17.

