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Abstract. With the rise of Cloud and Big Data technologies, Machine
Learning as a Service (MLaaS) receives much attention, too. However,
in some sense, the current situation resembles the era of wild digitaliza-
tion, where security was pushed to the sideline. Back then, the problem
was mostly about misunderstanding of severe consequences that insecure
digitalization might bring. To date, common awareness of security has
improved significantly, however, currently we are facing rather a technolo-
gical challenge. Indeed, we are still missing a competitive and satisfactory
solution that would secure MLaaS.
In this paper, we contribute to the very recent line of research, which
utilizes a Fully Homomorphic Encryption (FHE) scheme by Chillotti et
al. named TFHE. It has been shown that TFHE is particularly suitable
for securing MLaaS. In addition, its security relies on the famous LWE
problem, which is considered quantum-proof. However, it has not been
stuied yet how all the TFHE parameters are to be set. Hence we provide
a thorough analysis of error propagation through TFHE homomorphic
computations, based on which we derive constraints on the parameters
as well as we suggest a convenient representation of internal objects. We
particularly focus on effective resource utilization in order to achieve the
best performance of any prospective implementation.

Keywords: Privacy in the Cloud, Machine Learning, Fully Homomor-
phic Encryption, Post-Quantum Cryptography

1 Introduction

There are many Cloud service providers that offer a platform for easy-to-mount
MLaaS. Based on Xie et al. [1], there are at least Google [2], Microsoft [3],
GraphLab (now Turi) [4] or Ersatz Lab [5], who were offering MLaaS commer-
cially already in 2014, many new providers have joined since then.

However, the main concern, which Xie et al. study in their paper and which
has been put forward by Graepel et al. [6] in 2012, is user data privacy with
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respect to MLaaS. On the one hand, MLaaS users not only need not maintain the
servers or prediction models, they can even process their data on a commercial
model, which can be kept confidential to the users. On the other hand, in the
traditional approach, encryption is only employed for data transmission. I.e., the
sensitive user data gets decrypted before it enters the prediction model at the
server. Besides the fact that such a trust model requires absolute confidence of
the user in the cloud, it may also violate some legal restrictions (e.g., GDPR [7]
in the EU).

Recently, multiple approaches how a prediction model can be evaluated on
encrypted (and never decrypted) user data with existing cryptographic tools
have emerged. Approaches by Graepel et al. [6] or by Xie et al. [1] employ so
called Leveled Homomorphic Encryption (LHE), which limits the depth of non-
linear operations in the evaluated circuit. That might be a problem in particular
in case of still more popular Deep Neural Networks (DNN’s), which may con-
tain even thousands of layers, where non-linear operations need to be evaluated.
This issue has been addressed by Bourse et al. [8], who suggest to employ the
TFHE scheme by Chillotti et al. [9], which does not limit the number of non-
linear operations. TFHE—with slight modification—allows to perform addition
and evaluate a function, both on encrypted data. Recently, a different approach
for privacy-preserving DNN evaluation has been proposed by Tillem et al. [10],
who suggest to employ Additive Homomorphic Encryption (AHE) in combina-
tion with secure Multi-Party Computations (MPC’s) in a form of an interactive
protocol, which they call SwaNN.

We decided to build upon the approach by Bourse et al., i.e., we aim to
employ an extended variant of TFHE for DNN evaluation on encrypted data.
First, we find useful that the protocol is non-interactive, which might be an
advantage, e.g., in the world of IoT. We also spot a potential in prospective
generic usage of (the extended) TFHE.

(Extended) TFHE in Brief. TFHE is a recent FHE scheme, which builds upon
the famous Learning With Errors (LWE) problem introduced by Regev [11], who
also discusses its quantum hardness. In its original form, TFHE encrypts a single
bit, however, an extension by Carpov et al. [12] introduces multivalue plaintext
space. Homomorphic properties of multivalue TFHE can be written as follows:

TFHE(a)⊕ TFHE(b) ≈ TFHE(a+ b), and (1)

evalf
(
TFHE(a)

)
≈ TFHE

(
f(a)

)
, (2)

where ≈ means “encrypts the same”, and ⊕ and evalf stand for particular ho-
momorphic addition and function evaluation algorithms, respectively. Note that
TFHE is a randomized encryption scheme, hence each time a value is encrypted,
it might output a different ciphertext.

In addition to randomized ciphertexts, TFHE also adds certain amount of
noise to plaintext representation. With each ⊕ operation, the internal noise
grows additively. After the noise exceeds certain bound, correct decryption may
not be guaranteed.
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The cornerstone of TFHE (as well as many other FHE schemes) is a procedure
referred to as bootstrapping, which aims at reducing the noise under certain fixed
bound. Since the first-ever FHE scheme by Gentry [13] from 2009, bootstrapping
runs internally the decryption procedure with encrypted key bits, referred to as
the bootstrapping keys. Most importantly for multivalue TFHE, its bootstrapping
is capable of function evaluation with no overhead, hence evalf in (2) is in fact
bootstrapping.

Our Contributions. Due to its noisy nature, TFHE can be tuned by its pa-
rameters to work more or less precisely. On the one hand, a few errors might
pose only a little problem, e.g., in case of approximate classification as presented
by Bourse et al. [8]. On the other hand, in case we need to guarantee the output
correctness, multivalue TFHE must process the data in an error-free manner.
This can be found useful, e.g., in case we evaluate a certified DNN – any er-
ror is definitely undesirable. We also find convenient to know where the edge of
error-free evaluation resides.

Prior works [8, 12] discuss or employ multivalue TFHE, however, they do not
provide any hint how all the TFHE parameters are to be set, nor suggest how
the evaluated bootstrapping function is to be encoded in order to guarantee
error-free homomorphic operations on given multivalue plaintext space. In this
paper, we primarily focus on this goal: namely, we thoroughly analyze error
propagation through the whole DNN evaluation process, we suggest to use three
different precision levels for underlying structures, and we propose how the eva-
luated function is to be encoded properly. In addition, we suggest a simplification
of the bootstrapping procedure, which might be useful in prospective FPGA
implementations, and we also fix some minor bugs.

Paper Outline. Section 2 serves as a brief yet exhaustive summary of TFHE
algorithms with their recent improvements, including our observations. Next,
it outlines neural network evaluation on encrypted data. It also provides many
technical details that will be referenced in the rest of the paper. In Section 3, we
carefully analyze error propagation through TFHE in order to guarantee correct
decryption. We also suggest internal representation of some TFHE variables as
well as we propose a simplification to the TFHE bootstrapping algorithm. We
conclude our paper in Section 4.

Symbols & Notation. Since this paper has a lot of technical content, we
introduce frequent symbols and notations at single place, details will be given
later. We denote:

– B the binary Galois field GF2, T the set R/Z referred to as the torus,
– M (N)[X] the set of polynomials modulo XN + 1, for a set M and N ∈ N0,
– for a polynomial p(X) = p(0)+p(1)X+p(2)X2+. . .+p(N−1)XN−1, we denote

coeffs(p) = (p(0), p(1), . . . , p(N−1)),
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– for a vector of polynomials w = (w
(0)
0 +w

(1)
0 X+. . .+w

(N−1)
0 XN−1, . . . , w

(0)
n−1+

w
(1)
n−1X + . . .+ w

(N−1)
n−1 XN−1), we denote

• wi(X) = w
(0)
i + w

(1)
i X + . . .+ w

(N−1)
i XN−1, and

• w(j) = (w
(j)
0 , . . . , w

(j)
n−1),

– a
$← M and a

α← M the uniform and the zero-centered α-deviated draw,
respectively, of a random variable a from M .

2 Fully Homomorphic Encryption and Neural Networks

In this section, we revisit TFHE by Chillotti et al. [9] as well as subsequent en-
hancements [8, 12]. In particular, we focus on its usage with neural networks,
which we will refer to as WTFHE (neural-netWork-ready Torus Fully Homomor-
phic Encryption; [14]). We explain the (modified) bootstrapping algorithms in
closer detail as a prerequisite for parameter derivation in the following sections.
Finally, we outline homomorphic neural network evaluation with WTFHE.

The Torus and Concentrated Distribution. We call T = R/Z—real numbers
modulo 1—with standard addition operation the torus. Torus forms a module
over Z, i.e., we can multiply its elements by integers yielding torus elements.
The operation can be extended to integer-torus polynomials.

Unlike multiplication, torus division by an integer cannot be defined uniquely,
same holds for expectation of a distribution on the torus. However, this can be
fixed for a concentrated distribution [9], which is a distribution with support
limited to a ball of radius 1/4, up to a negligible amount. For further technical
details, we refer the reader to [9].

2.1 (W)TFHE Samples

(W)TFHE is a fully homomorphic cipher, which employs internally two encryp-
tion schemes: T(R)LWE and TRGSW. It uses TLWE to encrypt its plaintexts—i.e.,
the global encryption function—, while TRGSW and TRLWE are used internally
within the bootstrapping procedure. In our paper, we simplify and unify notation
across papers (we follow the updated notation from [9], which was introduced
at the end of Section 3 of that paper).

T(R)LWE.

Definition 1 (T(R)LWE Sample). Let n ∈ N be the dimension, N ∈ N, N = 2ν

for some ν ∈ N0, be the degree, α ∈ R+
0 standard deviation and let the plaintext

space P = T(N)[X], the ciphertext (sample) space C = T(N)[X]n+1 and the key
space K = B(N)[X]n. For m ∈ P, we call c = (a, b) the TRLWE sample of
message m with key k ∈ K if

b = m+ k · a + e, (3)
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where a
$← T(N)[X]n and e

α← T(N)[X]. Further, for a = 0, we call the sample
trivial, for m = 0, we call the sample homogeneous, and for N = 1, we call the
sample the TLWE sample.

Note that TRLWE sampling is actually encryption. For decryption, we apply
TRLWE phase function (followed by rounding if applicable), definition follows.

Definition 2 (T(R)LWE phase). Let n, N and α be the TRLWE parameters as
per Definition 1, and let c = (a, b) be a TRLWE sample of m under a TRLWE
key k. We call the function ϕk : T(N)[X]k × T(N)[X]→ T(N)[X],

ϕk(a, b) = b− k · a, (4)

the TRLWE phase. Next, we call the sample (a, b) valid iff the distribution of
ϕk(a, b) is concentrated. Finally, we denote msg(c) := E

[
ϕk(c)

]
the message of

sample c, which equals m for a valid sample, since the noise is zero-centered.

In general, the TRLWE phase function returns m + e, i.e., the plaintext with
a (zero-centered) noise. TRLWE decryption can be understood as either:

1. an erroneous decryption via TRLWE phase – we accept some error in our
decrypted results, which can be considered useful, e.g., in the context of
differential privacy [15], or

2. a correctable decryption – for this purpose, we need to control the amount of
noise and follow the TRLWE phase by appropriate rounding (the main focus
of this paper), or

3. an expectation of the TRLWE phase (i.e., msg(c)) – this is useful for formal
definitions and proofs.

Next, we state the additively homomorphic property.

Theorem 1 (Additive Homomorphism [9]). Let c1, . . . , cn be valid and in-
dependent TRLWE samples under key k and let e1, . . . , en ∈ Z(N)[X] be integer
polynomials. In case c =

∑n
i=1 ei · ci is a valid TRLWE sample, it holds

msg
( n∑
i=1

ei · ci
)

=

n∑
i=1

ei ·msg(ci) (5)

and the noise amplitude is bounded by

‖Err(c)‖∞ ≤
n∑
i=1

‖ei‖1 · ‖Err(ci)‖∞. (6)

TRGSW. Unlike torus polynomials in TRLWE, TRGSW encrypts integer polyno-
mials. For the purposes of bootstrapping, it defines so called External Product,
� : TRGSW × TRLWE → TRLWE, which is multiplicatively homomorphic on
TRGSW × TRLWE samples. Definitions follow.



6 Klemsa, J.

Definition 3 (Gadget Matrix [9]). Let Bg = 2γ for some γ ∈ N and l ∈ N
be decomposition parameters and let N and n be TRLWE degree and dimension,
respectively. We call

H =



1/Bg . . . 0
...

. . .
...

1/Blg . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/Blg


, (7)

H ∈ T(N)[X](n+1)l,n+1, the gadget matrix.

Next, we recall the Gadget Decomposition Algorithm as Algorithm 1, which is—
in this particular form—entangled with the gadget matrix H.

Algorithm 1 Gadget Decomposition of a TRLWE Sample [9]
(for gadget matrix H, quality β = Bg/2 and precision ε = 1/2Blg)

Input: TRLWE sample (a, b) =
(
a1(X), . . . , ak(X), b = an+1(X)

)
∈ T(N)[X]n+1,

Input: decomposition parameters Bg, l.
Output: Vector of integer polynomials d ∈ Z(N)[X](n+1)l.

1: for all ai(X) =
∑N−1

j=0 a
(j)
i Xj , a

(j)
i ∈ T, do

2: ā
(j)
i ← bB

l
g · a

(j)
i e

3: let [ā
(j)
i,1 , . . . ā

(j)
i,l ] be a Bg-ary representation of ā

(j)
i s.t. ā

(j)
i =

∑l
p=1 ā

(j)
i,pB

l−p
g

4: for i = 1 . . . n+ 1 and p = 1 . . . l do
5: d(i−1)l+p(X) =

∑N−1
j=0 ā

(j)
i,pX

j

6: return d

Note 1. For the gadget matrix H, quality β = Bg/2 and precision ε = 1/2Blg, we
denote the gadget decomposition algorithm as DecH,β,ε(a, b).

Theorem 2 (Quality and Precision of Gadget Decomposition [9]). Algo-
rithm 1 outputs d ∈ Z(N)[X](n+1)l such that ‖d‖∞ ≤ β and ‖d·H−(a, b)‖∞ ≤ ε.

Definition 4 (TRGSW Sample [9]). Let n, N and α be the parameters of
TRLWE with key k. We call C = Z +m ·H the TRGSW sample of m ∈ Z(N)[X]
if each row of Z is an independent homogeneous TRLWE sample under key k,
and we call m the message of C, denoted msg(C). The phase of C is defined
as the vector of the (n + 1)l TRLWE phases, denoted ϕk(C), and the error of
C is defined as the vector of the (n + 1)l TRLWE errors, denoted Err(C). We
call C ∈ T(N)[X](n+1)l,n+1 a valid TRGSW sample under key k iff there exists
m ∈ Z(N)[X] such that each row of C −m ·H is a valid homogeneous TRLWE
sample under key k.
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Definition 5 (External Product [9]). For decomposition parameters β and
ε, we define the External Product, � : TRGSW × TRLWE→ TRLWE, as

A � b = DecH,β,ε(b)T ·A, (8)

where TRLWE is the underlying cipher of TRGSW.

Theorem 3 (Multiplicative Homomorphism [9]). Let k be a TRLWE key,
A a valid TRGSW sample of mA ∈ Z(N)[X] under key k, and b a valid TRLWE
sample of mb ∈ T(N)[X] under the same key. Then A � b is a TRLWE sample
of mA ·mb ∈ T(N)[X] under key k.

2.2 Bootstrapping

As outlined in the Introduction, bootstrapping aims at reducing the internal
noise of a TLWE sample to some fixed level, while it runs the decryption proce-
dure internally. In addition, it is capable of function evaluation at no extra cost.
(W)TFHE bootstrapping consists of three algorithms: BlindRotate, SampleExtract
and KeySwitch. In this paper, we only recall their variants, which are relevant to
prospective neural network evaluation, e.g., we fix the TRGSW dimension, which
will no longer be different than 1. In addition and unlike plain TFHE bootstrap-
ping, we consider multivalue plaintext space as well as function evaluation.

In a high level overview, bootstrapping proceeds as follows. First, BlindRotate
takes the bootstrapped TLWE sample and runs homomorphically a decryption-
like procedure with encrypted key bits (referred to as the bootstrapping key). This
way, it “blindly rotates” the second input – a TRLWE sample, which encodes (and
encrypts) the bootstrapping function in a form of a torus polynomial.

Next, SampleExtract extracts the constant term of the TRLWE-encrypted
polynomial back into a TLWE sample. Note that at this point, the sample is
encrypted with a (possibly) different key, hence KeySwitch does the job and
switches the key to the original one, if applicable.

Blind Rotate. BlindRotate is the cornerstone of bootstrapping, since this is
where homomorphic decryption takes place, i.e., where the noise is refreshed.
It inputs the bootstrapped TLWE sample (a, b) in a scaled and rounded integer
form (ā, b̄) ∈ Zn+1 (details to come later). In accordance with TLWE decryption
(phase function, cf. Definition 2), BlindRotate internally calculates

−m̄ = −b̄+
∑

ki · āi, (9)

where ki’s are TRGSW-encrypted under key k′(X), referred to as the bootstrap-
ping keys and denoted by BKi or BKk→k′ . In BlindRotate, the (hidden) value
−m̄ emerges as a power of X, by which the other input—a TRLWE sample
(u, v) ∈ T(N)[X]2—is multiplied. The multiplicative homomorphic property is
applied, hence (u, v) gets blindly rotated.
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The (possibly trivial) TRLWE sample (u, v) encrypts a torus polynomial
tv(X), referred to as the test vector. Its torus coefficients encode the (rescaled)
bootstrapping function f : ZN → T, for now and for simplicity, as

tv(k) = f(k), k ∈ [0, N − 1]. (10)

Note 2. When multiplied by a power of X, the polynomial coefficients rotate
negacyclically with period 2N . For this reason, the rest of the actually evaluated
bootstrapping function f is a negacyclic extension of its first N values, i.e., we
have rather f : Z2N → T and it must hold that

f(N + k) = −f(k), k ∈ [0, N − 1]. (11)

In plain domain, the following occurs at the constant term:(
X−m̄ · tv(X)

)(0)
= tv(m̄ mod 2N) = f(m̄ mod 2N), (12)

i.e., there emerges the desired function value, which will be extracted by the
subsequent algorithms.

Note 3. Due to (12), āi’s and b̄ will be scaled to Z2N as ā = b2Nae.

Note 4. During BlindRotate, the “old” noise is refreshed with a fresh noise, which
comes from the bootstrapping keys (TRGSW-encrypted ki’s) as well as from the
(possibly) encrypted test vector (i.e., it can be zero).

Enhancement of BlindRotate. Zhou et al. [16] suggest to unfold the original
BlindRotate loop, which multiplies the TRLWE sample (u, v) one by one by
Xkiāi , cf. (9), and group the terms by two. Bourse et al. [8] further improve
the technique by Zhou et al. by reducing the number of required encryptions of
bootstrapping keys from 4 to 3 (per pair of key bits).

For pairs (k, k′) and (a, a′) of consecutive elements of vectors k and a, re-
spectively, they write

Xka+k′a′ = kk′(Xa+a′ − 1) + k(1− k′)(Xa − 1) + (1− k)k′(Xa′ − 1) + 1. (13)

I.e., their bootstrapping keys consist of TRGSW encryptions of kk′, k(1 − k′)
and (1− k)k′ for each pair of bits of the global TLWE key k. Find the improved
BlindRotate algorithm as Algorithm 2 (line 3 fixes the missing +ACC term in [8]).

Theorem 4 (BlindRotateIm Error). Algorithm 2 returns a sample with error
bounded as follows:

‖Err(ACC)‖∞ ≤ 6nlNβEBK + n(1 +N)ε+ ‖Err(u, v)‖∞. (14)

Proof. Recall that by Definition 5, external product A�b = Dec(b)T ·A, and by
Definition 4, TRGSW sample A = ZA +mA ·H. We write line 3 of Algorithm 2
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Algorithm 2 BlindRotateIm ([9], improved by [8, 16])

Input: (ā, b̄) ∈ (Z2N )n+1 (scaled and rounded TLWE sample under key k ∈ Bn),
Input: (possibly trivial) TRLWE sample (u, v) ∈ T(N)[X]2 of tv ∈ T(N)[X] under key
k′(X) ∈ B(N)[X], and
Input: for i ∈ [1, n/2], TRGSW samples BK3i−2, BK3i−1 and BK3i of k2i−1k2i, k2i−1(1−
k2i) and (1 − k2i−1)k2i, respectively, under key k′(X), where (k1, . . . , kn) = k (aka.
bootstrapping keys).
Output: TRLWE sample of X−m̄ · tv under key k′(X), where m̄ =

(
b̄ −

∑n
i=1 ki ·

āi
)

mod 2N .

1: ACC← X−b̄ · (u, v) // aka. accumulator
2: for i ∈ [1, n/2] do
3: ACC ←

(
(Xa2i−1+a2i − 1)BK3i−2 + (Xa2i−1 − 1)BK3i−1 + (Xa2i − 1)BK3i

)
�

ACC + ACC

4: return ACC

as (with simplified indexes as per (13))

ACCnew =
(
(Xa+a′ − 1)BKkk′ + (Xa − 1)BKk(1−k′) + (Xa′ − 1)BK(1−k)k′︸ ︷︷ ︸

BKΣ

)
�

� ACC + ACC = (15)

= Dec(ACC)T︸ ︷︷ ︸
d

·BKΣ + ACC = . . . = (16)

= (Xa+a′ − 1) ·
(
d · ZBKkk′ + kk′ · (d ·H)

)︸ ︷︷ ︸
from (Xa+a

′
− 1)BKkk′ term

+ . . .+ ACC = . . . (17)

Next, by Theorem 2, decomposition precision gives Dec(c) ·H = c + εc, where
‖εc‖∞ ≤ ε.

. . . = (Xa+a′ − 1) ·
(
d · ZBKkk′

ª

+kk′ ·
(
ACC
♣

+ εACC

♠

))
+

+ (Xa − 1) ·
(
d · ZBKk(1−k′)

ª

+k(1− k′) ·
(
ACC
♣

+ εACC

♠

))
+

+ (Xa′ − 1) ·
(
d · ZBK(1−k)k′

ª

+(1− k)k′ ·
(
ACC
♣

+ εACC

♠

))
+ ACC

♣
. (18)

By Chillotti et al. [9], proof of Theorem 3.13:

ª is bounded by 2lNβEBK,
♣ carries error from the previous round and, unlike ª, it cancels out up to
one term with a unit-valued monomial (check all combinations of k, k′),
♠ is bounded by (1 + N)ε and it appears at most once among the terms –
where keys multiply to 1.
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Hence we can bound the error of ACCnew as follows:

‖Err(ACCnew)‖∞ ≤ 3 · 2 · 2lNβEBK + ‖Err(ACCold)‖∞ + 2 · (1 +N)ε. (19)

The loop begins with ‖Err(ACC0)‖∞ = ‖Err(u, v)‖∞ and keeps adding a constant
term n/2-times, cf. (19), hence the result (14) follows.

Note that the improvement by Zhou et al., further tuned by Bourse et al.,
aims at reducing the number of external products, which is the most demanding
operation. Indeed, the original BlindRotate algorithm [9] loops full n indices
(instead of only n/2), for which it computes

ACC← BKi � (Xai · ACC− ACC) + ACC, (20)

where BKi encrypts i-th bit of the global TLWE key k. At this point, it is
interesting to observe that (20) can be written also in a form, which resembles
the improved variant (Algorithm 2, line 3), and which encrypts the same:

ACC←
(
(Xai − 1)BKi

)
� ACC + ACC. (21)

However, the fundamental difference between (20) and (21) is that the latter
introduces higher noise overhead due to the (Xai − 1)BKi term. Unfortunately,
such a rearrangement cannot be applied to the improved variant.

Sample Extract. SampleExtract algorithm inputs the output of BlindRotate,
which is a TRLWE sample – let us denote it (r, s) (previously ACC). Recall that
(r, s) encrypts the desired value at the constant term of its message under the
key k′(X) ∈ B(N)[X]. As outlined, the goal of SampleExtract it to extract the
constant term in a form of a TLWE sample.

First, let us write down the constant term of the message of (r, s). After some
rearrangements we get

m(0) = s(0) −
(
k(0), k(1), . . . , k(N−1)

)︸ ︷︷ ︸
new TLWE key k′=coeffs(k′)

·
(
r(0),−r(N−1), . . . ,−r(1)

)
. (22)

It follows that
(
(r(0),−r(N−1), . . . ,−r(1)), s(0)

)
is a TLWE sample, which en-

crypts m(0) under the key k′ = coeffs(k′). SampleExtract algorithm follows as
Algorithm 3 (a slightly modified version of [9]).

Algorithm 3 SampleExtract ([9], modified)

Input: TRLWE sample (r, s) ∈ T(N)[X]2 of m(X) ∈ T(N)[X] under k′(X) ∈ B(N)[X],
Output: TLWE sample of m(0) under k′ = coeffs(k′).

1: return (a′, b′) =
(
(r(0),−r(N−1), . . . ,−r(1)), s(0)

)
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Note 5. In case we use the TRGSW key k′(X) such that coeffs(k′) = k, we can
skip key switching. N.b., in such a case, the bit security of k′ equals to that of
k, which is typically shorter, hence this must be taken into account with respect
to security. The possibility of omitting KeySwitch will be thoroughly discussed
in Section 3.4.

Note 6. SampleExtract preserves the error – it only re-arranges the coefficients.

Key Switching. KeySwitch algorithm inputs a TLWE sample (a′, b′) and its
goal is to change the encryption key from k′ back to k. For this purpose, the
algorithm inputs a series of TLWE encryptions of fractions of k′’s bits referred
to as the key switching keys, denoted by KSk′→k. In Algorithm 4, we recall the
original KeySwitch algorithm.

Algorithm 4 KeySwitch ([9])

Input: TLWE sample (a′, b′) ∈ TN+1 of m under k′ ∈ BN ,
Input: for i ∈ [1, N ], j ∈ [1, t] (t is a precision parameter), TLWE samples KSi,j of
2−j · k′i under key k ∈ Bn, where (k′1, . . . , k

′
N ) = k′ (aka. key switching keys).

Output: TLWE sample of m under key k.

1: ā′i ← b2ta′ie for i ∈ [1, N ]
2: let [ā′i,1, ā

′
i,2, . . . , ā

′
i,t] be a binary representation of ā′i s.t. ā′i =

∑t
j=1 ā

′
i,j2

t−j

3: return (a, b) = (0, b′)−
∑N

i=1

∑t
j=1 ā

′
i,jKSi,j

Theorem 5 (KeySwitch Error [9]). Algorithm 4 returns a sample with error
bounded as follows:

‖Err(a, b)‖∞ ≤ ‖Err(a′, b′)‖∞ + tNEKS + 2−(t+1)N. (23)

WTFHE Bootstrapping. As outlined in Note 3, the bootstrapped TLWE sam-
ple (a, b) enters BlindRotate scaled and rounded, while rounding may introduce
a rounding error. A lemma follows.

Lemma 1 (Pre-BlindRotate Error). The scaled and rounded sample (ā, b̄) en-
ters BlindRotate with an error bounded as follows:∥∥∥Err

( ā

2N
,
b̄

2N

)∥∥∥
∞
≤ ‖Err(a, b)‖∞ +

n+ 1

4N︸ ︷︷ ︸
Eround

, (24)

where we denote the rounding error term as Eround.

Proof. After scaling (ā, b̄) back to torus domain by 1/2N, rounding on multiples
of 1/2N may change each of the n+ 1 terms of the sample (a, b) by 1/2 · 1

2N .
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Note 7. The error bound (24) is the greatest one, which occurs during boot-
strapping before the noise is refreshed. Therefore we denote the bound as

Emax := ‖Err(a, b)‖∞ + Eround. (25)

Note 8. Rounding error (scaled to Z2N ) is grater than the domain precision of
the evaluated bootstrapping function f : Z2N → T, hence we need to introduce
another (and sparser) level of precision for the global WTFHE plaintexts in or-
der to satisfy our ultimate goal – error-free computations. From now on, we
denote the plaintext space bit-precision by π, i.e., the plaintext space will be
Z2π , while 2π < 2N . N.b., the inaccuracy in the input of the evaluated function
will be thoroughly discussed in Section 3.3, where we propose proper test vector
generation.

Let us finally give the WTFHE bootstrapping algorithm as Algorithm 5. N.b.,
at this point, we do not specify any relations between its parameters, nor do we
guarantee correctness of its output.

Algorithm 5 WTFHE Bootstrapping

Input: WTFHE parameters: π (plaintext precision), n (dimension),N (TRLWE degree),
γ, l and t (TRGSW decomposition and KS precision parameters),
Input: TLWE sample (a, b) ∈ Tn+1 of m = m̄/2π, m̄ ∈ Z2π , under key k ∈ Bn,
Input: (possibly trivial) TRLWE sample (u, v) ∈ T(N)[X]2 of test vector tv ∈ T(N)[X],
which encodes a (negacyclic) function f̄ : Z2π → Z2π , under key k′(X) ∈ B(N)[X],
Input: bootstrapping keys BKk→k′ , and key switching keys KScoeffs(k′)→k.
Output: TLWE sample of f̄(m̄)/2π under key k.

1: āi ← b2Naie for i ∈ [1, n], b̄← b2Nbe
2: (r, s)← BlindRotateIm

(
(ā, b̄), (u, v),BKk→k′

)
3: (a′, b′)← SampleExtract

(
(r, s)

)
4: return KeySwitch

(
(a′, b′),KSk′→k

)

Corollary 1 (Bootstrapping Error [9]). Algorithm 5 returns a sample (a, b)
with error bounded as follows:

‖Err(a, b)‖∞ ≤ 6nlNβEBK + n(1 +N)ε+ ‖Err(u, v)‖∞ + tNEKS + 2−(t+1)N︸ ︷︷ ︸
E0

,

(26)
where we denoted the error bound of a freshly bootstrapped sample by E0.

2.3 Evaluation of a Neural Network on Encrypted Data

In this section, we recall1 how to evaluate a neural network in its simplest form
as outlined by Rumelhart et al. [17], later referred to as the deep feedforward

1 N.b., we extended and updated our original text from [14], including figures.
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neural network. Next, we outline how it can be evaluated on encrypted input
data. Note that the evaluation procedure can be applied to more complicated
neural network structures, however, this is out of the scope of this paper.

Artificial Neural Networks. An (Artificial) Neural Network (NN) is a series
of elementary building blocks referred to as perceptrons organized in a net struc-
ture. In this paper, we consider only the simplest structure of NN’s organized in
layers, which are evaluated one after each other.

A perceptron P on certain layer inputs kP values from perceptrons on the
preceding layer (or NN inputs) and outputs single value, possibly to several
perceptrons on the subsequent layer as their respective input (or NN output).

A weight w
(P )
i is assigned to each (i-th) input of the perceptron P . These weights,

together with the structure, define the neural network. The perceptron P eva-
luates its kP input values (vi)

kP
i=1 as follows:

evalP (vi)
kP
i=1 = f

( kP∑
i=1

w
(P )
i vi

)
, (27)

where f is referred to as the activation function; cf. Figure 1. f is a non-linear
and often also an odd function with bounded image, e.g., signum or hyperbolic
tangent. In general, NN’s operate with real numbers, however, we will (need to)
narrow their domain down to an integer interval, namely (−2π−1, 2π−1).

v1
v2
.
.
.

vk

Σ f output

·w1

·wk

·w2

inputs:

Fig. 1: Perceptron evaluation. Taken from [14].

Discretized Neural Networks. Neural networks with (bounded) integer domain
are referred to as Discretized Neural Networks (DiNN’s; Bourse et al. [8]). In
their paper, they define DiNN’s formally as well as they suggest an approach
how to convert an already-trained real-valued NN into a discretized one. From
now on, we will only consider DiNN’s whenever we refer to NN’s.

NN Evaluation on Encrypted Data. Since NN evaluation melts down to
addition and activation function (cf. Figure 1), one can conveniently employ
WTFHE, which has exactly the features we need: it has cheap addition (cf. (5))
and it is tailored to evaluate a (negacyclic) function during bootstrapping, i.e.,

eval
(hom.)
NN

(
WTFHE(vi)

)kNN
i=1
≈WTFHE

(
eval

(plain)
NN (vi)

kNN
i=1

)
. (28)
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Dealing with Negacyclicity. Since the function, which is evaluated during boot-
strapping, must be negacyclic, we need to face this limitation. A popular NN
activation function is signum, which is negacyclic itself – up to the zero value
at the negacyclic projection of σ(0) = 0. Note that this value can be avoided
by appropriately bounded weights. In case we insist on a different activation
function, e.g., hyperbolic tangent, we need to further limit the interval in order
to avoid the unwanted negacyclic projections near zero, cf. Figure 2.

N

f ≈ tanh

N/2 unusedconst0

. . . negacyclic projection

Fig. 2: Discretized and bounded hyperbolic tangent. Taken from [14].

3 WTFHE Parameter Setup for Error-Free Computations

Let us recall that the ultimate goal of our paper is to derive a set of WTFHE
parameters, such that it satisfies/guarantees:

error-free computations: decryption always results in the expected plaintext,
in particular after—appropriately limited—homomorphic operations (addi-
tion & bootstrapping),

performance: the parameters are tight, i.e., resources are not wasted due to
redundancy, and

security: given bit-security level is achieved.

In this section, we provide a thorough analysis of WTFHE noise propagation,
which results in a set of limitations on WTFHE parameters.

3.1 Overview of Error Propagation

During homomorphic operations, the maximum error bound evolves as follows:

ad addition: the error bound is additive, cf. (6) in Theorem 1,
ad bootstrapping: if the noise of the bootstrapped sample is smaller than

certain bound, bootstrapping evaluates the bootstrapping function correctly
(i.e., at correct value) as well as the bootstrapped sample carries a fixed
amount of noise independent of the original sample; cf. (26) in Corollary 1.

We summarize error propagation in Figure 3, where the number of additions
is bounded by n⊕. Note that the overall maximum of noise is achieved within
bootstrapping right after the initial rounding, cf. Note 7.
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Note 9. Since a freshly bootstrapped sample plays a similar role as a freshly
encrypted sample, we will demand the error bound E0 for a fresh sample, too.

E0

fresh sample
(bootstrapped)

addition−−−−−→ n⊕ · E0

pre-bootstrap
(Epre)

bootstrapping︷ ︸︸ ︷
rounding−−−−−−→ n⊕ · E0 + Eround

pre-BlindRotate
(Emax)

BlindRotate,−−−−−−−→
etc. . .

E0

bootstrapped
sample

(29)

Fig. 3: Error propagation during WTFHE addition and bootstrapping, cf. (24),
(25) and (26). Number of additions is bounded by n⊕.

3.2 Precision Levels

Before we derive the WTFHE parameters themselves, we discuss what approach
is the most suitable for representation of different WTFHE variables at various
stages. E.g., sample precision must be larger than plaintext precision in order to
be capable of carrying the fine-grained noise. Namely, we are interested in plain-
text precision (π bits), internal TRLWE degree N (ν bits), and sample precision
(τ bits), which is the finest precision throughout WTFHE, also referred to as the
torus precision.

First, recall that in Note 8 we derived that ν+1 > π, otherwise the rounding
error would exceed the plaintext precision 1/2π, cf. (24). Next, let us discuss two
possible cases for sample precision τ :

(a) τ = ν + 1 (i.e., 2-level precision), or
(b) τ > ν + 1 (i.e., 3-level precision); cf. Figure 4.

2-level Precision. By (26) in Corollary 1, the error of a freshly bootstrapped
sample is bounded at least by

6nlNβEBK ≥ 6nN
Bg
2
· 1

2N
≥ 3

2
, (30)

where we applied β = Bg/2, EBK ≥ 1/2N = 1/2τ (smallest possible error for
given torus precision) and the fact that other parameters are integers. The error
bound is even larger than the size of the torus, hence it would lead to a complete
plaintext loss in most cases. It follows that it must be the case of three precision
levels.

3-level Precision. With three levels of precision, we have τ > ν+1 > π, which
is what we suggest and which will be used in the rest of this paper.
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2N prec. ν+1
as well as
torus prec. τ

plaintext prec. π

(a) 2-level precision.

2N prec. ν+1

plaintext prec. π

torus prec. τ

2N prec. ν+1

(b) 3-level precision.

Fig. 4: Two- vs. three-level precision.

3.3 Test Vector Generation

After we have fixed the setup with three levels of precision, we focus on the
process of encoding the (negacyclic) bootstrapping function f̄ : Z2π → Z2π into
actual test vector, which is a torus polynomial tv ∈ T(N)[X]. Recall that tv
comes into play in BlindRotate (Algorithm 2), which “blindly rotates” tv by
X−m̄, where m̄ = b̄ −

∑n
i=1 ki · āi, āi, b̄ = b2Nai, be and (a, b) is the boot-

strapped TLWE sample. The error of m̄, down-scaled by 2N , is bounded by
Emax = n⊕ · E0 + Eround, cf. (25). Note that only Eround = n+1

4N > 1
2N is

greater than the precision of down-scaled m̄, i.e., the error of m̄ can be greater
than 1. For this reason, we suggest that the (negacyclic) bootstrapping function
f̄ : Z2π → Z2π is expanded to a staircase function f : Z2N → T, before it is
encoded into the test vector tv, as

f(k) = f̄
(⌊ k

2ν+1−π

⌉)
, k ∈ [0, 2N − 1], (31)

cf. Figure 5. N.b., the function f is indeed staircase, since we have ν + 1 > π.
The function f is then encoded into tv (as already suggested in (10)) as follows:

tv(k) = f(k), k ∈ [0, N − 1]. (32)

Recall that since f is negacyclic, the rest of the values does not need to be
encoded, cf. Note 2.

Next, let us focus on the error bound. As soon as Emax is smaller than half
of the plaintext resolution, i.e.,

Emax ≤
1

2π+1
, (33)

the erroneous value of m̄ does not leave the “stair”, i.e., the function is evaluated
as expected, cf. Figure 5.

3.4 Key Switching: Employ, or Omit?

Let us discuss two possible bootstrapping approaches: either we employ, or we
omit key switching, as outlined in Note 5. Recall that key switching aims at
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2× max. error Emax

2N
prec

. ν
+1

plaintex
t prec

. π

. . . f̄ : Z2π → Z2π

. . . f : Z2N → T

Fig. 5: Conversion of a bootstrapping function f̄ into a staircase function f . N.b.,
both functions are appropriately scaled.

changing the key of a TLWE ciphertext from (the bootstrapping TRLWE key
interpreted as) a TLWE key of length N to the original TLWE key of length n.

Note 10. With respect to NN evaluation, we commit on the following:

– in order to prevent overflow, we bound n⊕—the number of additions; note
that we only work with encrypted±1 in each fresh(ly bootstrapped) sample—
as follows:

n⊕ ≤ 2π−1, and (34)

– since the activation function is known to the evaluating party, the test vector
can be in the form of a trivial TRLWE sample, i.e., ‖Err(u, v)‖∞ = 0.

The bound (34) can be achieved by limiting the weights of each perceptron by

kP∑
i=1

|w(P )
i | ≤ 2π−1. (35)

Note 11. Before we go through each scenario, we outline our heuristic: we suggest
to split any error bound between individual error terms by equal parts. Note that
this approach does not guarantee the best tradeoff.

In both scenarios, the bound (33) on Emax (guarantees correct decryption,
Emax itself bounded by (29)) can be satisfied as follows:

Emax ≤ 2π−1E0

1/2π+2

+Eround
1/2π+2

!
≤ 1

2π+1
, (36)

where we applied the heuristic from Note 11.
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Rounding Error. Note that the rounding error term Eround is independent on
whether KeySwitch is employed, or not, hence it can be discussed for both sce-
narios together. By (24), we have

Eround ≤
n+ 1

4N

!
≤ 1

2π+2
, (37)

which yields
N ≥ 2π(n+ 1). (38)

Since N must be a power of 2, we suggest to choose n as a power of 2 minus
two, in order to achieve n even; cf. Algorithm 2.

Employ KeySwitch. The additive error term 2π−1E0 of (36) can be estimated
by (26) and bounded as follows:

2π−1E0 ≤ 3 · 2π−1nlN2γEBK(N)

1/2π+4 (ª)

+ 2π−1n(1 +N)2−(γl+1)

1/2π+4 (©)

+ 2π−1‖Err(u, v)‖∞
= 0

+

+ 2π−1tNEKS(n)

1/2π+4 (♣)

+ 2π−12−(t+1)N
1/2π+4 (♠)

!
≤ 1

2π+2
, (39)

where we applied β = Bg/2 = 2γ−1 and ε = 1/2Blg = 2−(γl+1) (cf. Definition 3,
Algorithm 1 and Theorem 2), and where we supported the error terms of boot-
strapping and key switching keys EBK and EKS with their bit entropy, which is N
and n, respectively. Recall that bootstrapping keys are encrypted with an N -bit
TRGSW/TRLWE key k′(X), which is independent from the general n-bit TLWE
key k (it also encrypts the keyswitching keys). In logarithmic domain, we write
the following set of inequalities:

2π + 3 + log(3) + log(n) + log(N) + log(l) + γ + log
(
EBK(N)

)
≤ 0, (ª)

2π + 3 + log(n) + log(N + 1)− γl − 1 ≤ 0, (©)

2π + 3 + log(N) + log(t) + log
(
EKS(n)

)
≤ 0, (♣)

2π + 3 + log(N)− t− 1 ≤ 0. (♠)

Omit KeySwitch. As outlined in Note 5, we can set the TRGSW/TRLWE key
k′(X) so that coeffs(k′) = k (we fill the rest with zeros) and then we can omit
KeySwitch. N.b., the bit entropy of such a key is no longer N – it is only n.

Note 12. With this approach, we effectively encrypt the main TLWE key by it-
self – indeed, bootstrapping keys encrypt bits of the key by itself. This relies on
so called circular security assumption; find more on circular security in Roth-
blum [18].

On the one hand, we get rid of the error terms (♣) and (♠) in (39), which gives
us more room for the plaintext space or security. The other advantage is that
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we simplify the overall bootstrapping process, which may lead to a substantial
improvement in case of prospective FPGA implementation.

On the other hand, the bootstrapping keys must carry more noise, since their
entropy is reduced from N bits to n bits, in order to sustain certain security level.
This can be balanced by appropriate measures, e.g., by using longer TLWE keys.

Following an analogous approach to the previous one, we end up with the
following set of inequalities:

2π + 2 + log(3) + log(n) + log(N) + log(l) + γ + log
(
EBK(n)

)
≤ 0, (♥)

2π + 2 + log(n) + log(N + 1)− γl − 1 ≤ 0, (♦)

where we split the error bound into two parts (instead of four parts; now 1/2π+3

each) and where we decreased the bit entropy used for encryption of the boot-
strapping keys from N to n.

3.5 Baby Parameters

Finally, we derive a set of baby parameters for testing purposes, where we only
insist on π = 2 in order to have multivalue TFHE. Next, note that the bound (38)
onN can be relaxed, provided that the TLWE key k has limited Hamming weight.
Indeed, the bound can be rewritten as N ≥ 2π

(
‖k‖1 + 1

)
, cf. proof of Lemma 1.

N.b., this is only admissible in a testing scenario. We choose n = 4 and N = 16,
hence we demand ‖k‖1 ≤ 3, and we calculate the remaining parameters based
on inequalities presented in Section 3.4. For minimal demonstration purposes,
we have chosen not to employ KeySwitch, i.e., we applied (♥) and (♦). Find the
baby parameters in Table 1. We encourage the reader to test these parameters
with the WTFHE Library [14].

π = 2 n = 4 N = 16 ‖k‖1 ≤ 3

γ = 3 l = 4 τ = 20 |BK| = 3.75 KiB

Table 1: Baby parameters for π = 2 bits of plaintext precision.

4 Conclusion

We addressed the problem of parameter setup, bootstrapping function encoding
and representation of (W)TFHE variables in order to guarantee correctness of the
homomorphic evaluation procedure. We derived a bound, under which expected
results are guaranteed. We find the bound particularly useful for the evaluation
of certified DNN’s on encrypted data. The bound can also serve as a starting
point for possible parameter relaxations. Besides that, we suggested a simplified
bootstrapping scenario, which omits the KeySwitch algorithm. Last but not least,
due to its comprehensivity, our paper can serve as a good starting point for
a prospective (W)TFHE implementation.
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Discussion & Future Directions. Althouth a practical privacy-preserving
MLaaS would find its application speedily, it appears that the research still has
a long way to go. Nevertheless, we still believe in the approach using (W)TFHE.

Our next goal is to derive and fine-tune a set of—possibly relaxed—real-world
parameters, which we plan to utilize for an FPGA implementation of (W)TFHE.
We also aim to run a benchmark to compare both bootstrapping scenarios (with,
or without KeySwitch) in order to identify the faster one in a real-world setting.
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10. Tillem, G., Bozdemir, B., Önen, M.: Swann: Switching among cryptographic tools
for privacy-preserving neural network predictions. Preprint (2020)

11. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

12. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Cryptographers’ Track at the RSA
Conference, pp. 106–126. Springer (2019)

13. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
University (2009)
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