
Correlation Power Analysis of SipHash
Matúš Olekšák, Vojtěch Miškovský

Department of Digital Design
Faculty of Information Technology
CTU in Prague, Czech Republic
{oleksmat,miskovoj}@fit.cvut.cz

Abstract—SipHash is ARX-based pseudorandom function op-
timized for short inputs. It was developed as a hash table lookup
function, but it is also used for MAC generation. At the time of
writing, there was no side-channel attack on SipHash known to
us. This work is about application of CPA attack on SipHash.
Attack was performed on ChipWhisperer CW308 UFO Board
with STM32F0 target. Approximately 800 power traces were
needed for succesful attack. There are two parts of attack as
there is secret key divided into two halves. Leakage information
from XOR was used to attack cipher key. The main contribution
of this work is power model of binary addition including carry
propagation.

Index Terms—CPA, SipHash, ARX, side-channel, Chipwhis-
perer

I. INTRODUCTION

SipHash [2] is promising modern ARX-based pseudoran-
dom function, that is also used for MAC generation. And
because of that, it is important to know whether it is resilent
against side-channel attacks, as is commonly believed [5]
about ARX-based algorithms. It is few times faster than AES-
CMAC, and that implies usage in time critical systems or
lightweight systems, e.g., Internet of Things.

It is widely known, that AES is prone to side-channel attacks
because of low differential uniformity of S-Boxes [6]. On the
other hand, there is not that much research about side-channel
attacks on ARX-based algorithms. This is probably caused by
lower popularity of such algorithms. In this work, we explore
vulnerability of SipHash to Correlation Power Analysis [4].

Correlation Power Analysis (CPA) was introduced in 2004
by Brier et al. [4] and it is non-profiled side-channel attack.
In the first phase of the attack, power consumption traces are
measured. After this physical prerequisite, all the remaining
steps are purely computational. Leakage function needs to be
chosen according to the attacked algorithm and its implemen-
tation. The secret information (usualy the cipher key) needs to
be split into smaller parts (e.g., bytes) to make its enumeration
computationaly feasible (e.g., 256 posible key candidates for
a byte). Then the power consumption is estimated for each
key candidate using the chosen leakage function. In the
final step, correlation between measured and estimated power
consumption is calculated. The best correlated key candidate
is supposed to be the correct cipher key.

II. OUR CONTRIBUTION

Main goal of this work was succesful side-channel attack
on SipHash. It was achieved by CPA, which was adjusted for

each half of the cipher key. Crucial part of this method is carry
flag-based power model.

III. ANALYSIS AND RELATED WORK

A. SipHash description
SipHash is ARX-based pseudorandom function, that can

be used for 64-bit MAC generation. There are 4 state vari-
ables called v0-v3, their initial default values corresponds
to ”somepseudorandomlygeneratedbytes” in ASCII. Neverthe-
less, any other initial values can be used as long as v0 and v1
differ from v2 and v3. For the sake of clarity, subscript in the
name of the variable indicates round number and it represents
value of variable in the beginning of chosen round, otherwise
it represents the initial value of variable.

Fig. 1. SipHash Diagram [2].

128-bit key is halved into two 64-bit values k0 and k1.
Before the first round, initial transformation is done: v01 =
v0⊕k0, v11 = v1⊕k1, v21 = v2⊕k0, v31 = v3⊕k1⊕m0,
where m0 represents the first 64 bits of plaintext. Default num-
ber of rounds is 2 per 64 bits of plaintext, and 4 finalization
rounds.

Fig. 2. SipHash Round Diagram [2].

SipHash is an ARX algorithm, and because addition and
rotation does not leak information as good as XOR, it should



be convenient to focus on XOR operations in computation. As
plaintext is XORed with v3 in the beginning, it is good idea to
focus on v31 and get the second half of cipher key from this
part of computation. Knowing v31 value, it should be possible
to discover the rest of the cipher key later.

B. ARX-based algorithms CPA Attacks

Because of SipHash being ARX-based function, it means,
that there is not much research about its side-channel power
analysis because of its commonly incorrect conclusion [5], that
they are almost impossible to attack. It is true, that XOR does
not leak that much information as, e.g., S-Box in AES, but
that is solvable using higher number of traces. Also, SipHash
is not that much widespread as, e.g., AES, so that implies its
lower popularity in research dealing with power analysis.

C. SPARX CPA

An attack on SPARX algorithm was presented in [3], and
its authors demonstrated, that single bit DPA is ineffective on
modular addition and so is CPA [4], because there were many
incorrect key candidates yielding at higher correlations than
the correct ones. Afterward, authors tried to attack on rotation
and XOR. And it turned out to be better target of information
leakage. Using CPA on XOR, authors were able to discover
encryption key with tens of traces.

IV. ATTACK

Because of SipHash’s way of dealing with k0 and k1 is
different, it is necessary to attack differently on k0 and k1. We
need to discover k1 first as its value is needed for attack on
k0. Regarding informations from experiment presented in [3],
we decided to focus on XOR operations in this attack. The
first step is obvious to attack on output of v3⊕ k1⊕m0.

Then, with fully known v31 value, the most straightforward
way of discovering k0 is through intermediate value (v21 +
v31) ⊕ (v31 <<< 16). As long as full v31 value is known,
it is only necessary to enumerate all possible v21 values to
evaluate k0 candidates.

A. Measurement

All testing is performed on STM32F0 target of Chipwhis-
perer CW308 UFO Board and power traces are captured
with ChipWhisperer-Lite. Measurement is setup to capture
2000 power traces with 20000 samples, which cover first
three rounds. Plaintext is randomly generated. Measurement is
started by trigger, which results in obtaining correctly aligned
power traces. Reference implementation of SipHash [1] is used
with default initial values of v0-v3.

B. Attack on k1

We decided to attack using intermediate value fk1(m0) =
v3 ⊕ k1 ⊕ m0. As a leakage function, −HW (fk1(m0)) is
used, because it was experimentally discovered that it is
generating better results than commonly used HW (fk1(m0)),
where HW (x) is Hamming Weight of x. Pearson correlation
between the power consumption estimated by the leakage
function and the measured power traces is calculated.

Fig. 3. Correlation graph of k1 key attack.

Graph in Figure 3 shows significant peaks of correlation
values. All the significant parts are showed in detail on graphs
in Figure 4, 5 and 6.

Fig. 4. Detail of first correlation graph peak of k1 key attack.

The point with highest correlation represents key candidate
0x00, therefore, it is correlated with plaintext (resp. v3⊕m0).
It can be used for power traces alignment and cropping, when
trigger is not available, since the correlation with the first byte
of plaintext peaks before the first round, and it also peaks
before the third round, as can be seen in Figure 6.

Also, there is a point, where the correct key has the highest
correlation, but its peak is hardly distinguishable from peaks
of other keys.

Fig. 5. Detail of second correlation graph peak of k1 key attack.



The origin of correlation peaks in Figure 5 is not clear as
processing of the targeted intermediate values is not expected
in this part of computation.

Fig. 6. Detail of third correlation graph peak of k1 key attack.

On the correlation graph in Figure 6, there is a correlation
peak of correct key, and few samples later, there is a correlation
peak of plaintext from third round. The origin of correlation
peak of the correct key at this part of computation is also
unclear.

Fig. 7. Correlation graph according to number of traces of k1 key attack.

Graph in Figure 7 shows how correlation of correct key
evolves with rising number of traces. The correct key byte
has the highest correlation with more than 800 power traces.

C. Attack on k0
This part of attack is more interesting and more complex.

We choose fk0(m0) = (v21 + v31) ⊕ (v31 <<< 16) as the
leakage function. k1 is known from the first part, correct values
of v31 can be computed.

The binary addition complicates things a little bit. To
overcome this problem, we decided to simulate binary adder
and incorporate the carry flag value. In the beginning, the carry
flag is set to 0. We compute (v2⊕ k0) + v31 + carry.

Each hypothetical byte carry flag is saved for next byte
attack (using result >> 8) and removed from sum result (us-
ing result& = 0xFF ). It is simulated, what data is available
on bus, since it constitutes the main power consumption of
microprocessor. Then it is XORed with v31 <<< 16 and cor-
relation between measured and estimated power consumption
is calculated.

The best correlated key candidate is the found key. Saved
carry flag from each byte is used in attack on the next byte.
And so it continues until all the remaining bytes of k0 are
discovered.

The proposed method of saving the carry flag and subtract-
ing it from the sum result is essential for finding the correct
key.

Fig. 8. Correlation graph of k0 key attack on XOR.

As is visible on graph in Figure 8, there is only single one
correlation peak. It is displayed in detail on graph in Figure 9,
that it is showing three significant correlation peaks for the
correct key and no ghost peaks.

Fig. 9. Detail of correlation graph peak of k0 key attack on XOR.

Fig. 10. Correlation graph according to number of traces of k0 key attack
on XOR.



Figure 10 shows, that lower number of power traces is
needed for discovery of the correct key in comparison with
k1. Approximately 300 power traces are needed to discover
all bytes of k0.

Fig. 11. Correlation graph of k0 key attack on addition.

Graph in Figure 11 shows correlation of attack on
fk0(m0) = (v21 + v31). Therefore, the attack is focused on
the result of addition instead of XOR. It shows multiple ghost
peaks in contrast with attack on XOR operation.

Fig. 12. Detail of correlation graph of k0 key attack on addition.

In graph in Figure 12, it is clearly visible, that even though
the correct key has correlation peak, it is not the highest one.

D. Summary

It is shown, that SipHash is prone to CPA, however it
needs to be customized properly. With different method on
k0 and k1 key value, it is possible to discover the correct key
with around 800 power traces. Attack on k1 value is not that
exceptional, on the other hand k0 attack is more advanced. It
is because of binary addition between XOR operations. Carry
flag propagation is needed in order to correctly estimate the
result of addition. Also, it is shown, that it is considerably
better to attack on XOR operation instead of binary addition.

V. CONCLUSION

This work shows that even though ARX-based functions
are often considered resistant or irelevant for side-channel
attacks, it is not true, as some other research has also already
shown. The noticeable difference as opposite to, e.g., AES,

is the higher number of power traces needed for full key
discovery, because of attacking on XOR function. But there
is inconsistency with an attack on SPARX algorithm, because
we needed high hundreds of traces instead of mentioned tens
of traces.

It is important to do more research on ARX-based functions
as they are used more and more in various embedded systems,
yet research around them is not that widespread. And that may
be one of the reasons, why they are getting so popular - be-
cause there is not that much research about their weaknesses.

In this work, we extend existing research of power analysis
of ARX-based algorithms by adjusting it for use on SipHash.
Succesful CPA attack is presented enabling to discover full
secret key.

Main contribution of this work is method of carry propaga-
tion in binary addition, that occurs in SipHash round. It was
possible to easily recover k0 key using this method.

Next steps in our research will include attack on different
implementation of SipHash or using presented CPA method
on different ARX algorithms. It would be useful to compare
microprocessors of different architectures or even different
platforms (e.g., FPGAs) as well. We would also like to analyze
the different behavior for XOR and addition leakage functions
and differences in results presented in [3] and ours.

VI. AKNOWLEDGEMENT

This work has been partially supported by the Student
Summer Research program of FIT CTU in Prague and CTU
project SGS20/211/OHK3/3T/18.

REFERENCES

[1] Jean-Philippe Aumasson, “GitHub - veorq/SipHash: High-speed secure
pseudorandom function for short messages” [Online], Available: https:
//github.com/veorq/SipHash

[2] Jean-Philippe Aumasson and Daniel J. Bernstein, “SipHash: a fast short-
input PRF”, Cryptology ePrint Archive, Report 2012/351. Available:
https://ia.cr/2012/351

[3] Yan, Yan and Oswald, Elisabeth, “Examining the Practical Side Chan-
nel Resilience of ARX-Boxes”, Cryptology ePrint Archive, Report
2019/335. Available: https://ia.cr/2019/335

[4] Eric Brier and Christophe Clavier and Francis Olivier, “Correlation
Power Analysis with a Leakage Model”, Cryptographic Hardware
and Embedded Systems - CHES 2004: 6th International Workshop
Cambridge, MA, USA, August 11-13, 2004. Proceedings. Available:
https://www.iacr.org/archive/ches2004/31560016/31560016.pdf

[5] Alex Biryukov, Daniel Dinu, and Johann Großschädl. “Correlation
Power Analysis of Lightweight Block Ciphers: From Theory to Prac-
tice”. In Applied Cryptography and Network Security - 14th Inter-
national Conference, ACNS 2016. Available: https://doi.org/10.1007/
978-3-319-39555-5 29

[6] Heuser, Annelie and Rioul, Olivier and Guilley, Sylvain, “A Theoreti-
cal Study of Kolmogorov-Smirnov Distinguishers”. Constructive Side-
Channel Analysis and Secure Design (2014). Available: https://doi.org/
10.1007/978-3-319-10175-0 2


