
Towards High-Level Synthesis of Polymorphic
Side-Channel Countermeasures

Petr Socha, Martin Novotný
Czech Technical University in Prague

Faculty of Information Technology
Czech Republic

{petr.socha,novotnym}@fit.cvut.cz

Abstract—Side-channel attacks pose a severe threat to both
software and hardware cryptographic implementations. Current
literature presents various countermeasures against these kinds
of attacks, based on approaches such as hiding or masking, im-
plemented either in software, or on register-transfer or gate-level
in hardware. However, emerging trends in hardware design lean
towards a system-level approach, allowing for faster, less error-
prone, design process, an efficient hardware/software co-design,
or sophisticated validation, verification, and (co)simulation strate-
gies. In this paper, we propose a Boolean masking scheme suitable
for high-level synthesis. We implement a protected PRESENT
encryption in C language, utilizing the concept of dynamic logic
reconfiguration, synthesize it for Xilinx Artix 7 FPGA, and we
compare our results regarding clock cycle latency and area
utilization. We evaluate the effectiveness of proposed countermea-
sures using specific t-test leakage assessment methodology. We
show that our high-level synthesis implementation successfully
conceals the side-channel leakage while maintaining reasonable
area and latency overhead.

Index Terms—Cryptography, Side-Channel Analysis, Embed-
ded Security, Internet of Things, High-Level Synthesis

I. INTRODUCTION

With the upcoming Internet of Things era, we see a sig-
nificant rise in embedded devices surrounding us in our
everyday lives. To protect our privacy and to ensure the
safety, many security measures must be taken, including the
implementation of various authentication, authorization, and
encryption schemes. Many of these algorithms, considered
formally secure, are vulnerable to side-channel attacks when
implemented improperly. These attacks, such as Differential
Power Analysis, take advantage of data-dependent power
consumption of the device [1], [2], or its electromagnetic
radiation [3], and they typically aim at the secret key recovery.
Side-channel attacks pose a severe threat to both software
and hardware cryptographic implementations, especially in the
IoT environment, where the attacker may easily gain physical
access, leaving the device vulnerable to tampering.

Many countermeasures have been proposed to prevent side-
channel attacks. These can be categorized into several classes
based on the overall approach. Masking is a widely used
technique based on a randomization of the processed data
using random masks [4], [5], [6], [7], making it difficult
for the attacker to predict any intermediate value and thus
to exploit the leakage. Different approach is hiding, which
aims at concealing the exploitable leakage in noise, e.g., by

generating Gaussian noise, clock randomization [8], by using
dual-rail logic [9], or by register/bus precharge with random
data. Shuffling is another form of hiding, where, e.g., the
cipher structure [10] or the control flow [11], [12] changes
dynamically during the encryption. Some of the proposed
countermeasures or their combinations can be implemented
in modern hardware by utilizing dynamic (logic) reconfigura-
tion [13], [14], [15].

Traditional and widely adopted hardware design method-
ology is based on the Register-Transfer Level (RTL) ap-
proach, i.e., modeling the digital system by registers, data
signals, and logical operations between them. Such a system
is usually described using concurrent languages like VHDL
or Verilog. Emerging trends, however, lean to a system-level
approach [16], [17], which brings many advancements, includ-
ing more abstract design flow, optimal hardware/software co-
design, simplified verification, validation and co-simulations,
and many more. The system-level description may end up
compiled into machine code, or synthesized into hardware im-
plementation. High-level synthesis is a process of translating
the C, C++ or SystemC algorithmic description to a clock-
timed RTL or gate-level model, allowing further mapping onto
final architecture/technology, e.g., an FPGA.

Our Contribution: In this paper, we propose a novel
dynamic logic reconfiguration-based countermeasure approach
to secure the PRESENT [18] encryption, described at the
system level in C language, against side-channel attacks. We
synthesize the implementation using High-Level Synthesis
for Xilinx Artix 7 FPGA, and we evaluate the side-channel
leakage using a specific leakage assessment methodology.
We show that our protected high-level implementation suc-
cessfully obscures the power consumption leakage, while
managing to keep reasonable area and time overhead.

II. PRELIMINARIES

In the following subsections, we briefly present the specifics
and features of the high-level synthesis design flow. We
then describe the PRESENT encryption algorithm based on
a substitution-permutation network. Finally, we explain the
dynamic logic reconfiguration-based approach to the Boolean
masking.

A. FPGA Design using High-Level Synthesis

While RTL design is still a predominant digital design
methodology, the rising complexity of nowadays digital sys-
tems calls for a more robust approach. With technologies such
as Systems-on-chip (SoC) and Networks-on-chip (NoC), many
new issues and challenges arise, regarding, e.g., optimal hard-
ware/software co-design or validation/verification strategies.
Also, there is a “design race” where designers and developers
are pushed towards earlier deadlines and lower costs at the
same time. System-level design, where hierarchical blocks are
described on an algorithmic level, abstracted from the platform
or technology specifics, seems like a promising emerging
alternative to the current methodologies.

In this paper, we choose Xilinx Artix 7 FPGA as our target.
Given this, we choose Xilinx Vivado Design Suite as our high-
level synthesis toolchain [19], which provides synthesis from
C, C++, or SystemC code to an IP core.

For the code to be synthesizable, only a subset of the
C language must be used (similar to the VHDL language in
case of the RTL design), with most of the basic constructs
available, such as variables, arrays, loops, or conditions. Extra
features like arbitrary-width integer types allow for better
optimization. Furthermore, additional constraints and opti-
mizations may be set using pragma directives, e.g., advising
loops to be pipelined or unrolled, partitioning arrays, and
more. Designers may also define the resulting I/O protocol,
including various handshakes or bus interfaces like AXI. The
final implementation is synthesized using a selected strategy
based on the constraints and metrics such as area, throughput
and latency, allowing to explore possible design space quickly.
Figure 1 depicts the workflow using high-level synthesis.

There are limited research resources regarding usage of
high-level synthesis in the cryptographic domain [16], [20],
dealing mostly with time and area performance. The effects
of various high-level synthesis parameters on the power side-
channel are discussed in [17]. Techniques reducing side-
channel vulnerabilities such as imbalanced code branches are
presented in [21]. Information flow enforcement [22], [23]
introduces prevention against threats such as exploitable I/O
and buffer errors, unprivileged access, or timing attacks. To
the best of our knowledge, there is no research regarding
high-level cryptographic implementations with power side-
channel countermeasures, preventing against attacks such as
Differential Power Analysis, available in the present literature.

B. PRESENT Encryption

PRESENT by Bogdanov et al. [18] is a lightweight symmet-
ric block cipher based on a substitution-permutation network
(much like the more prolific Advanced Encryption Standard)
with a block size of 64 bits and possible key sizes of 80 or
128 bits. The plaintext is encrypted by iteratively applying 31
transformations, called rounds. Each round consists of a round
key addition (XOR), a non-linear substitution layer (4-bit S-
boxes applied 16 times in parallel), and a linear permutation
layer. After 31 rounds, the 32nd round key is finally added
to produce the ciphertext. Figure 2 depicts the encryption

Verification

High-Level

Synthesis

IP Core

C/RTL

Co-Simulation

Verification

Algorithm in CTestbench in C

Constraints

Satisfied?

Figure 1: Example of a design flow using high-level synthesis.

Plaintext

Round Key

Addition

Substitution

Layer

Permutation

Layer

Round Key

Addition

Ciphertext

Round=31?

Cipher key

Key Schedule

Figure 2: PRESENT encryption algorithm.

algorithm. The versions with 80-bit and 128-bit keys differ
only in the Key Schedule operation.

C. Boolean Masking

Boolean masking is a countermeasure against side-channel
attacks proposed by Chari et al. [4]. Akkar et al. proposed
a masking scheme for a substitution-permutation network
(namely AES) in [5], with many others following [24], [25].
Mangard et al. [26] showed, however, that this concept of
masking, in hardware implementations, is still vulnerable to
first-order side-channel attacks because of glitches. This issue
is solved by masking schemes such as Threshold Implemen-
tation proposed by Nikova et al. [6], or Domain Oriented
Masking scheme proposed by Groß et al. [27].

Güneysu et al. proposed a scrambling of BRAM-based
S-boxes in [8]. Similar dynamic logic reconfiguration-based
concept, i.e., usage of precomputed masked S-boxes, which
is not affected by glitches, was proposed by Sasdrich et

al. [13] using more efficient CFGLUTs. In the following
paragraphs, we briefly describe the masking scheme utilizing
a reconfigurable substitution layer.

Assuming the PRESENT encryption algorithm accepts
plaintext pt masked by XORing a random mask m:

state′ := pt⊕m, (1)

where state′ is the masked cipher state, three round op-
erations/layers need to be taken into account and altered
appropriately so that equation

state = state′ ⊕m (2)

holds, allowing to finally obtain the ciphertext using state′.
The first layer, Round Key Addition, i.e., XOR, is a com-

mutative and associative operation:

state′ ⊕ rk = (state⊕ rk)⊕m. (3)

Therefore, the addition of the round key rk does not require
any further alteration since the output of the layer is already
equal to the valid cipher state masked by m.

The last, the Permutation layer, is a linear transformation P ,
permuting bits of the cipher state. The output of the layer is
therefore equal to the valid cipher state masked by a permuted
mask:

P (state′) = P (state)⊕ P (m), (4)

which means the mask that would need to be subtracted to
obtain the valid cipher state changes to P (m) and Equation 2
would not hold anymore if no alterations were done.

The middle layer is a non-linear Substitution layer S,
typically realized using a look-up table, in both hardware and
software. One option to retain the validity of the output is to
alter this look-up table into a masked substitution layer S′:

S′(state′) := S(state′ ⊕m)⊕ P−1(m), (5)

which realizes the original substitution upon masked input
value and outputs the substitution result masked by m pro-
cessed with inverse permutation P−1. This approach solves
the mask alteration performed by the Permutation layer, since:

P (state⊕ P−1(m)) = P (state)⊕ P (P−1(m)), (6)

making S′ the only alteration that needs to be done for
Equation 2 to hold. Using reconfigurable look-up tables (e.g.,
using arrays in software or BRAM, CFGLUT, or LUTRAM
in hardware) for the S′ layer, different masks may be used for
every encryption [13], [15].

While the described Boolean masking scheme may often
be sufficient for software implementations run on microcon-
trollers, where most leakage occurs on precharged memory
buses, the situation is more complicated in CMOS registers,
where the intermediate power consumption depends on bit
transitions, i.e., Hamming distance between the old and the
new value. Since

HD(x⊕m, y⊕m) = HW (x⊕y⊕m⊕m) = HD(x, y), (7)

where HW denotes Hamming weight and HD denotes Ham-
ming distance, and assuming the algorithm operates one round
per clock cycle, the masking described earlier protects only
the first round of the encryption. Sasdrich et al. [13] solve
this issue by applying Register Precharge, i.e., duplicating
the cipher state register and interleaving the masked state by
random data. This solves the problem, but it also reduces the
throughput of the cipher to half.

Although the Boolean masking scheme may be straight-
forwardly described on the system level in C language, the
Register Precharge is a technology-dependent countermeasure
on the register-transfer level. This fact makes the masking
scheme described earlier unsuitable for high-level synthesis,
calling for a novel approach.

III. HIGH-LEVEL SYNTHESIS OF ALTERNATING MASKS
SCHEME

In the following subsections, we propose a masking scheme
suitable for high-level synthesis, extending the one presented
in subsection II-C. We present our implementation and com-
pare the synthesis results with other approaches.

A. Alternating Masks Scheme

As explained in subsection II-C, the leakage on the working
register is proportional to the Hamming distance between the
old and a new value, which is, by definition, independent
of any mask XORed to both values. To solve this issue, we
propose using two independent random masks, m1, m2, and
alternating these masks in consecutive rounds. This success-
fully masks the Hamming distance leakage, since

HD(x⊕m1, y ⊕m2) = HW (x⊕ y ⊕m1 ⊕m2). (8)

This approach is only sufficient if the implemented encryption
algorithm operates at most one round per clock cycle, or, if
partially unrolled, an odd number of rounds per clock cycle.

To implement this masking, we propose using two different
altered substitution layers, S′0 and S′1, to be used alternatingly
in odd rounds:

S′1(state′) := S(state′ ⊕m1)⊕ P−1(m2), (9)

and even rounds:

S′0(state′) := S(state′ ⊕m2)⊕ P−1(m1). (10)

Assuming the PRESENT encryption with 31 rounds, as de-
scribed in subsection II-B, this results in one mask being used
for masking the plaintext, with the output ciphertext being
masked using the other mask.

Two different masks are generated for every encryption, and
the two sets of masked 4-bit S-boxes (32 S-boxes in total) are
implemented using dynamic logic reconfiguration.

This masking scheme can be easily described purely algo-
rithmically using C language and, as shown further, is well
suitable for FPGA high-level synthesis.

Listing 1: Top-level function.
p r e s e n t b l o c k t e n c r y p t (p r e s e n t b l o c k t p l a i n t e x t ,

p r e s e n t k e y t key ,
p r e s e n t b l o c k t maskIn ,
p r e s e n t b l o c k t maskOut) {

r e c o n f i g u r e (maskIn , maskOut) ;
p r e s e n t b l o c k t s t a t e = p l a i n t e x t ;
p r e s e n t k e y t roundKey = key ;
s t a t e = addRoundKey (s t a t e , roundKey) ;
f o r (i n t round = 1 ; round < 3 2 ; round ++) {
pragma HLS p i p e l i n e

roundKey = updateKey (roundKey , round) ;
s t a t e = s La ye r (s t a t e , round) ;
s t a t e = pLayer (s t a t e) ;
s t a t e = addRoundKey (s t a t e , roundKey) ;

}
r e t u r n s t a t e ;

}

B. Our Implementation

We implemented the masking scheme proposed in sub-
section III-A in C for Xilinx Vivado High-Level Synthesis.
Listing 1 shows the top-level function, which determines I/O
of the final IP core and defines the PRESENT encryption
algorithm. First, the masked substitution layers S′0 and S′1 are
computed using function reconfigure(). After that, 31 en-
cryption rounds are performed, as described in subsection II-B.
Notice the pragma pipeline directive, which in this case
assures a single cycle iteration latency. All the functions, but
reconfigure(), get inlined during the synthesis process.

The substitution layer is described in Listing 2. Notice the
pragma unroll directive, which causes the loop iterations to
be scheduled in parallel. Also, notice the bit-slicing indexing
provided by Vivado’s ap uint type.

Listing 3 describes an area-optimized version of the dy-
namic logic reconfiguration of the substitution layers. Pragma
RESOURCE directive specifies a memory primitive used to
implement a variable, in this case, LUTRAM, i.e., a single-
port distributed RAM. When the memory primitive is not
explicitly set, synthesis chooses one automatically to satisfy
the elaborated read/write schedule, taking both latency and
resource utilization in the account (this may, however, result
in a nonoptimal solution, such as using 16 18K block RAMs).

Pragma ARRAY PARTITION specifies partitioning of
an array into smaller arrays, partially or completely, in the
specified dimension. This results in using more instances
of the underlying memory primitive, i.e., multiple smaller
memories instead of one large memory, and it therefore also
increases the number of R/W ports. In this case, the multi-
dimensional sBoxMasked array (declared in Listing 2) is
partitioned completely in the second dimension, resulting in
16 memory instances (S-boxes) addressed using five bits
(round%2 and 4-bit input value). The 16 S-boxes, forming
the substitution layer, are configured in parallel (loop L3),
one input value at a time (loop L2). Even rounds and odd
rounds substitution layers reconfigurations are constrained to
be performed in parallel (loop L1); however, given the array

Listing 2: Substitution layer.
s t a t i c p r e s e n t s b o x t

sBoxMasked [2] [SBOX COUNT] [SBOX RANGE] ;
p r e s e n t b l o c k t sL a ye r (p r e s e n t b l o c k t s t a t e ,

p r e s e n t r o u n d i d x t round) {
p r e s e n t b l o c k t n e w S t a t e ;
f o r (i n t i =0 ; i <16; i ++){
pragma HLS u n r o l l

n e w S t a t e (i ∗4 + 3 , i ∗4) =
sBoxMasked [round %2][i] [s t a t e (i ∗4 + 3 , i ∗ 4)] ;

}
r e t u r n n e w S t a t e ;

}

Listing 3: Reconfiguration of S-boxes.
vo id r e c o n f i g u r e (p r e s e n t b l o c k t maskIn ,

p r e s e n t b l o c k t maskOut) {
pragma HLS RESOURCE v a r i a b l e =sBoxMasked \

c o r e =RAM 1P LUTRAM
pragma HLS ARRAY PARTITION v a r i a b l e =sBoxMasked \

c o m p l e t e dim=2
p r e s e n t b l o c k t mask1 [2]={maskOut , maskIn } ;
p r e s e n t b l o c k t mask2InvP [2]={ pInvLaye r (maskIn) ,

p InvLaye r (maskOut) } ;
L1 : f o r (i n t i = 0 ; i < 2 ; i ++){
pragma HLS u n r o l l

L2 : f o r (i n t j = 0 ; j < SBOX RANGE; j ++){
pragma HLS p i p e l i n e

L3 : f o r (i n t k = 0 ; k < SBOX COUNT; k ++){
pragma HLS u n r o l l

p r e s e n t s b o x t i d x =
mask1 [i] (4∗ k +3 , 4∗k) ˆ j ;

p r e s e n t s b o x t v a l =
sBoxClean [j] ˆ mask2InvP [i] (4∗ k +3 , 4∗k) ;

sBoxMasked [i] [k] [i d x] = v a l ;
}

}
}

}

partitioning and resulting access conflicts, they are scheduled
sequentially by the synthesis tool. This version of dynamic
logic reconfiguration is further referred to as Version 1.

In order to reduce the reconfiguration time complexity, the
sBoxMasked array may be further partitioned in the first
dimension, resulting in 32 memory instances addressed using
the 4-bit S-box input value. Swapping loops L1 and L2 now
allows for parallel reconfiguration of both even rounds and
odd rounds substitution layer S-boxes, resulting in lower time
complexity at the expense of the area. This version of dynamic
logic reconfiguration is further referred to as Version 2.

Unrolling all the three loops (and letting the synthesis
resolve occurring read/write conflicts) results in even lower
latency; this version is further referred to as Version 3.

C. Performance and Area Utilization

Table I compares area and latency of various PRESENT
encryption FPGA implementations:
• Unprotected VHDL implementation for register-transfer

level synthesis,

Table I: PRESENT encryption FPGA area and latency comparison.

Implementation
Area Latency (clock cycles)

Memory (FFs) Logic (LUTs) Encryption Extra Total

Unprotected, register-transfer level synthesis, LUT-based S-boxes 150 150 31 0 31

Unprotected, high-level synthesis, LUT-based S-boxes 229 226 32 1 33

Alternating Masks Scheme, high-level synthesis, Version 1 392 420 32 38 70

Alternating Masks Scheme, high-level synthesis, Version 2 442 598 32 20 52

Alternating Masks Scheme, high-level synthesis, Version 3 439 771 32 17 49

S-box Decomposition + Masking + Register Precharge,
register-transfer level synthesis, by Sasdrich et al. [13]

601 1508 62 32 (16) 94 (78)

• Unprotected C implementation for high-level synthesis,
• Three versions of the proposed Alternating Masks

Scheme C implementation for high-level synthesis,
• Protected register-transfer level implementation by Sas-

drich et al. [13], utilizing a similar concept of dynamic
reconfiguration-based countermeasures.

The results for the first five implementations are Vivado’s
post-RTL synthesis utilization statistics. Results for the last
implementation are based on those reported in [13]. All
implementations use look-up table S-boxes. It is essential
to say that the work by Sasdrich et al. combines three
countermeasures: S-box Decomposition, Boolean Masking,
and Register Precharge, while our proposed scheme may be
considered equivalent to using only Boolean Masking + Reg-
ister Precharge. Implementation by Sasdrich et al. targets
Spartan 6 FPGA, which utilizes 6-input LUT primitives same
as Artix 7. Sasdrich et al. propose to reduce the extra latency
by precomputing the reconfiguration data during previous
encryption, i.e., the latency in the brackets.

The single encryption latency of our implementation is
almost half of that reported by Sasdrich et. al, since we
do not use register precharge and we utilize two masks
instead, making total latency of our implementations lower
in all cases. Presented results demonstrate that a reasonable
area overhead can be achieved when using the high-level
synthesis. Furthermore, the system-level approach allows for
quick exploration of the design space, evaluating the area and
latency trade-off.

IV. SIDE-CHANNEL LEAKAGE EVALUATION

In the following subsections, we explain the methodology
used for side-channel leakage evaluation, and we compare
the results for both unprotected and protected PRESENT
encryption FPGA implementations.

A. Methodology
We evaluate side-channel leakage using specific t-test leak-

age assessment methodology [28], [29]. The protected high-
level implementation, Version 1, is synthesized and imple-
mented with Xilinx Vivado 2019.2 tools using the default
synthesis strategy. The implementation runs on a dedicated
side-channel experimental board [30], equipped with Xilinx
Artix 7 FPGA, clocked by an external 100MHz crystal os-
cillator, which gets divided by an internal MMCM module

down to 5MHz, used to clock the encryption IP core. The
FPGA design receives plaintexts and random masks from
an external source (the controlling PC) and sends out the
ciphertext using the UART interface. The power consumption
is measured using PicoScope 6404D oscilloscope and Langer
EMV-Technik PA 303 preamplifier. Voltage over the FPGA
core is sampled in the Vdd path, using 0.1Ω shunt resistor,
with the preamplifier acting as a DC blocker, and with 20MHz
bandwidth limiter enabled on the oscilloscope. Power traces
are captured during every encryption, i.e., while the encryption
IP core is active, capturing 8875 samples per trace with sample
rate 625 MS/sec, i.e., 125 samples per clock cycle (the whole
measured interval lasts 14.2µs).

Two independent sets of power traces are measured:

• unprotected encryption, i.e., with masks set to all zeroes,
• protected encryption, with uniform random masks.

In every data set, 1 million power traces are measured using
uniform random plaintexts. Power traces in both data sets are
processed independently in the following manner.

The data set is split into two disjoint groups according
to a bit in a chosen intermediate cipher value. We choose
the output of the substitution layer (S-boxes outputs), i.e.,
64 different models, and XOR of consecutive rounds inputs
(working register leakage), i.e., another 64 different models.
For every model, Welch’s t-test statistic is computed, at every
sampling point independently:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

, (11)

where X̄1, X̄2 are sample means, s21, s22 are sample standard
deviations and N1, N2 are cardinalities of the first and the
second group, respectively. The null hypothesis is that the two
groups’ means are equal, i.e., the groups are indistinguishable
by their sample means. The hypothesis gets rejected for high
values of |t| according to Student’s t-distribution and selected
significance level. In side-channel leakage assessment, the
value 4.5 or 5 is often considered a reasonable threshold for
the |t| value, to reject the hypothesis. This has to be done
with the possibility of both false positives and false negatives
in mind [31].

(a) Unprotected encryption.

(b) Protected encryption.

Figure 3: Test results of 64 models based on substitution layer
output (S-boxes outputs), where the t-value is shown on the
vertical axis and the time samples during the encryption are
shown on the horizontal axis.

B. Results

As mentioned above, every t-test is based on one million
power traces. All t-tests are measured using the Version 1
of the proposed implementation. Unprotected encryption is
measured by setting both masks to all zeroes (so that S =
S′0 = S′1). Figure 3 shows results of t-tests based on 64
models (64 overlaid curves), based on the substitution layer
output, i.e., on S-boxes outputs, for both unprotected and
protected PRESENT encryption. Figure 4 shows results based
on XOR of consecutive rounds inputs, i.e., on working register
Hamming distance leakage model. In each plot, two models
reaching the highest and the lowest t-value are highlighted.
As can be seen, the proposed masking scheme successfully
conceals the first-order side-channel leakage.

V. FUTURE WORK

Given these results, more complex higher-order glitch-
resistant masking schemes could be considered for a high-
level synthesis. An algorithm for formal verification of higher-
order masking schemes is presented in [32]. Side-channel
analysis of a source code at compilation time was recently
proposed in [33]. System-level FPGA design introduces many
novel challenges, including automated side-channel leakage
assessment and verification.

(a) Unprotected encryption.

(b) Protected encryption.

Figure 4: Test results of 64 models based on XOR of con-
secutive rounds inputs (working register leakage), where the
t-value is shown on the vertical axis and the time samples
during the encryption are shown on the horizontal axis.

VI. CONCLUSION

In this paper, we proposed a Boolean masking scheme,
utilizing dynamic logic reconfiguration, and suitable for high-
level synthesis from the C language algorithmic description.
The Alternating Masks Scheme was proposed as an alternative
to the masking and register precharge combination to deal
with Hamming distance leakage. In addition to a purely
algorithmic description, the proposed scheme also allows for
higher throughput compared to a combination of masking and
register precharge.

We implemented PRESENT encryption with the proposed
side-channel countermeasures in C language, and we synthe-
sized the protected implementation for Xilinx Artix 7 FPGA.
We have evaluated the area/latency trade-off, and we compared
our results with unprotected implementations and with an ex-
isting state-of-the-art dynamic reconfiguration-based protected
implementation. We showed that the overhead brought in by
high-level synthesis is reasonable considering both area and
latency.

To evaluate the effectiveness of the proposed side-channel
countermeasure, we performed a specific t-test leakage as-
sessment using one million power traces, focusing on the
substitution layer output and the XOR of consecutive rounds
inputs. Our results show that the proposed masking scheme
successfully conceals the first-order side-channel leakage.

ACKNOWLEDGMENT

This work was partially supported by the Czech Technical
University (CTU) grant No. SGS20/211/OHK3/3T/18.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, Differential Power Analysis. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[2] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2004, pp. 16–29.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security. Springer, 2001, pp. 200–210.

[4] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound ap-
proaches to counteract power-analysis attacks,” in Annual International
Cryptology Conference. Springer, 1999, pp. 398–412.

[5] M.-L. Akkar and C. Giraud, “An implementation of des and aes, secure
against some attacks,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2001, pp. 309–318.

[6] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in International conference
on information and communications security. Springer, 2006, pp. 529–
545.

[7] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2013,
pp. 142–159.

[8] T. Güneysu and A. Moradi, “Generic side-channel countermeasures for
reconfigurable devices,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2011, pp. 33–48.

[9] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: Dpa-
resistance without routing constraints,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2005, pp.
172–186.

[10] N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and fault analysis
resistance in hardware through dynamic reconfiguration,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2008, pp. 346–362.

[11] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation and
dummy rounds: Fault protection for block ciphers without check-before-
output,” in International conference on cryptology and information
security in Latin America. Springer, 2012, pp. 305–321.

[12] S. Jeřábek and J. Schmidt, “Analyzing and optimizing the dummy rounds
scheme,” in 2019 IEEE 22nd International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2019,
pp. 1–4.

[13] P. Sasdrich, A. Moradi, O. Mischke, and T. Güneysu, “Achieving side-
channel protection with dynamic logic reconfiguration on modern fpgas,”
in 2015 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2015, pp. 130–136.

[14] N. Mentens, “Hiding side-channel leakage through hardware randomiza-
tion: A comprehensive overview,” in 2017 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). IEEE, 2017, pp. 269–272.

[15] P. Socha, J. Brejnı́k, S. Jeřábek, M. Novotný, and N. Mentens, “Dynamic
logic reconfiguration based side-channel protection of aes and serpent,”
in 2019 22nd Euromicro Conference on Digital System Design (DSD).
IEEE, 2019, pp. 277–282.

[16] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? a case study,” in 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14). IEEE, 2014, pp. 1–8.

[17] L. Zhang, W. Hu, A. Ardeshiricham, Y. Tai, J. Blackstone, D. Mu,
and R. Kastner, “Examining the consequences of high-level synthesis
optimizations on power side-channel,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1167–1170.

[18] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2007, pp. 450–466.

[19] Xilinx, “Vivado design suite user guide: high-level synthesis (ug902),”
2018.

[20] A. Khalid, G. Paul, and A. Chattopadhyay, “High level synthesis for
symmetric key cryptography,” in Domain Specific High-Level Synthesis
for Cryptographic Workloads. Springer, 2019, pp. 51–90.

[21] S. C. Konigsmark, D. Chen, and M. D. Wong, “High-level synthesis
for side-channel defense,” in 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2017, pp. 37–44.

[22] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang, “High-level synthesis with
timing-sensitive information flow enforcement,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.

[23] Z. Jiang, H. Jin, G. E. Suh, and Z. Zhang, “Designing secure crypto-
graphic accelerators with information flow enforcement: A case study on
aes,” in Proceedings of the 56th Annual Design Automation Conference
2019, 2019, pp. 1–6.

[24] E. Trichina, T. Korkishko, and K. H. Lee, “Small size, low power,
side channel-immune aes coprocessor: design and synthesis results,” in
International Conference on Advanced Encryption Standard. Springer,
2004, pp. 113–127.

[25] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, “A side-
channel analysis resistant description of the aes s-box,” in International
Workshop on Fast Software Encryption. Springer, 2005, pp. 413–423.

[26] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking
masked aes hardware implementations,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2005, pp.
157–171.

[27] H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order,”
in ACM Workshop on Theory of Implementation Security, 2016.

[28] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi et al., “A testing methodology
for side-channel resistance validation,” in NIST non-invasive attack
testing workshop, vol. 7, 2011, pp. 115–136.

[29] T. Schneider and A. Moradi, “Leakage assessment methodology,” Jour-
nal of Cryptographic Engineering, vol. 6, no. 2, pp. 85–99, 2016.

[30] M. Bartı́k and J. Buček, “A low-cost multi-purpose experimental fpga
board for cryptography applications,” in Advances in Information, Elec-
tronic and Electrical Engineering (AIEEE), 2016 IEEE 4th Workshop
on. IEEE, 2016, pp. 1–4.

[31] F.-X. Standaert, “How (not) to use welch’s t-test in side-channel security
evaluations,” in International Conference on Smart Card Research and
Advanced Applications. Springer, 2018, pp. 65–79.

[32] G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque, B. Grégoire, and
P.-Y. Strub, “Verified proofs of higher-order masking,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2015, pp. 457–485.

[33] N. Bruneau, C. Christen, J.-L. Danger, A. Facon, and S. Guilley, “Se-
curity evaluation against side-channel analysis at compilation time,” in
International Conference on Algebra, Codes and Cryptology. Springer,
2019, pp. 129–148.

	Introduction
	Preliminaries
	FPGA Design using High-Level Synthesis
	PRESENT Encryption
	Boolean Masking

	High-Level Synthesis of Alternating Masks Scheme
	Alternating Masks Scheme
	Our Implementation
	Performance and Area Utilization

	Side-Channel Leakage Evaluation
	Methodology
	Results

	Future Work
	Conclusion
	References

