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Abstract. Not only have all current scientific white-box AES schemes
been mathematically broken, they also face a family of attacks derived
from traditional Side Channel Attacks, e.g., Differential Computation
Analysis (DCA) introduced by Bos et al. Such attacks are very universal
and easy-to-mount – they require neither knowledge of the implementa-
tion, nor use of reverse engineering.

In this paper, we particularly focus on DCA against white-box AES by
Chow et al. which shows lower than 100% success rate as opposed to
other schemes studied by Bos et al. We provide an explanation of this
phenomenon while unraveling another weakness in the design of white-
box AES by Chow et al. Based on our theoretical results, we propose an
extension of the original DCA attack which has a higher chance of key
recovery and might be adapted for other schemes.

Keywords: white-box AES, differential computation analysis, linear
cryptanalysis

1 Introduction

Standard ciphers like AES (Advanced Encryption Standard, [30]) were designed
with respect to so-called black-box model. In this model, an adversary is only
allowed to observe ciphertexts of chosen plaintexts while she does not gain any
other information about the encryption algorithm execution – neither interme-
diate values, nor timing. I.e., the adversary has an access to an encryption oracle
while her goal is to recover the key or employ the oracle for effective decryption.

However, real-world hardware implementations like smart cards do leak cer-
tain portion of internal information through various side-channels, e.g., power
consumption or electromagnetic radiation. This attack scenario is referred to as
the gray-box model.

Later, there has emerged a need for the most extreme scenario where the
adversary has a full control over the execution environment. Such a model is
called the white-box model. Note that in this model, the adversary is free to ob-
serve or alter all intermediate values as well as instructions. It follows that the
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original cipher’s intermediates—which typically allow for key recovery—must be
somehow hidden or masked. In the wild, several techniques and layers of protec-
tion are being put in place, ranging from software obfuscation to mathematical
approaches. In our paper, we will particularly focus on the mathematical point
of view, however, our results will turn out to be highly practical.

1.1 White-Box Cryptography

In 2002, Chow et al. proposed white-box implementations of AES and DES [12,11]
(WBAES, WBDES). These implementations aim at protecting the keying mate-
rial from an adversary who is in possession of the implementation which includes
the (masked) key. Even though many years have passed, all scientific white-box
AES schemes got eventually broken (to the best of our knowledge), especially
since the usage of side-channel attack techniques like Differential Computation
Analysis (DCA) [9], Differential Fault Analysis (DFA) [17,14] and/or their recent
enhanced variants [2,5,7,31].

However, the business need is stronger, hence this field is still very active,
despite relying on software obfuscation techniques and secret design, i.e., vi-
olating the Kerckhoffs’ principle [18]. Applications of white-box cryptography
include—but not limited to—Digital Rights Management (DRM) for protected
content distribution, Host Card Emulation (HCE) on mobile devices for mo-
bile payments, or memory-leakage resilient software; see Bogdanov et al. [6] for
a detailed description of each. For an extensive literature research regarding
white-box cryptography, we recommend a recent work by Goubin et al. [16].

1.2 Our Contributions

In this paper, we point out the atypically low success rate of the DCA attack
against Chow’s WBAES presented by Bos et al. [9]. For this phenomenon, we pro-
pose a theoretical explanation which identifies a vulnerability of Chow’s WBAES
to the DCA attack. Based on our results, we further generalize and extend the set
of targets that were employed by Bos et al. in their original attack. We also mo-
tivate to use our novel targets for a DCA attack against other implementations
that use (semi-)linear masking of intermediates.

In the experimental part, we provide a description of our attack toolkit and
employed algorithms, and we provide detailed numerical results including timing.
Notably, we confirm the vulnerability that was identified during the theoretical
analysis. Finally, we study the behavior of false positives in case of a blind attack
and derive an optimal number of traces in terms of computational effort.

1.3 Paper Organization

The paper is organized as follows: In Section 2, we give a brief description of
Chow’s WBAES, we provide a short introduction to side-channel attacks and
highlight the usage of DCA in the white-box attack context. We analyze the
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DCA attack against Chow’s WBAES in Section 3. In Section 4, we describe
the practical attack in detail, we support our explanation by an experiment and
propose a methodology for practical usage based on a comprehensive testing set.
We conclude our work in Section 5.

2 Preliminaries

2.1 Construction of White-Box AES by Chow et al.

One of now classical mathematical approaches how to hide an AES key—in
fact all intermediate values as well—in a software implementation is to turn
all AES operations into somehow masked lookup tables. Such an approach was
introduced in 2002 in a seminal paper by Chow et al. [12]. In their construction,
there are four types of lookup tables while the intermediate values are masked
using both linear and non-linear random bijections. However, this particular
design was mathematically broken two years later by Billet et al. [4].

In the following, we give a high-level description of tables Type II of Chow’s
WBAES because this is where the attack of our interest will show to be operating.
Note that we will be using plain AES without input and output encodings which
is technically just an obfuscation layer—we need a plain AES encryption oracle
anyways. For further details, we refer to Muir’s tutorial [28] which we highly
recommend over the original paper by Chow et al.

Lookup tables Type II combine several AES operations together with both
linear and non-linear masking, see (1). Description of each operation follows.

plaintext→ AddKey→ SBox→ MB ◦MC→ Enc−1

in table Type II

→ 1st intermediate→ . . .

(1)

plaintext: The table inputs 1 byte of an AES plaintext block, i.e., the table
contains 256 entries.

AddKey: This operation XORs respective byte of the (unknown) AES key with
the plaintext byte.

SBox: This operation is a standard AES SBox, i.e., a 1-byte non-linear bijection.
MB ◦MC: This operation is a composition of two 4-byte linear bijections: MC,

which stands for standard AES MixColumns, and MB, which is a random
linear bijection (hence unknown). Their 4-byte input is split into four 1-
byte values, which are handled in separate tables and XORed together in
subsequent tables using linearity. Hence this operation inputs 1 byte and
outputs 4 bytes (32 bits).

Enc−1: This operation is a random 4-bit non-linear bijection, which is applied
to each of the eight 4-bit nibbles of the 32-bit input value. Note that it is
re-randomized for each nibble and each table while its correct counterpart
Enc must be applied at the input to the subsequent lookup table.
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1st intermediate: The output value. It can be found by the adversary in the
lookup table.

Note 1. Enc bijection is only 4 bits wide, because two such 4-bit nibbles are
later XORed together, hence making the input for the subsequent table 8 bits
wide. If Enc were 8 bits wide, the subsequent table would need to input 16-bit
values, which would make the table very large, however, this approach is used
in some white-box implementations.

2.2 Side-Channel Attacks in White-Box Cryptography

Let us briefly recall the principle of side-channel attack and particularly one of
its variants upon which Bos et al. [9] built their attack in the white-box context.

Side-Channel Attack (SCA) is a large family of attacks that exploit any weak-
ness of a real-world implementation of a cryptographic algorithm to recover the
key (i.e., SCA assumes the gray-box context). SCA was pioneered by Kocher in
1996 in [24] where he focuses on public key cryptography. However, the general
idea can be ported to symmetric cryptography as well.

On the one hand, SCA may exploit passively observable measures coming
from different sources of information leakage, e.g., power consumption [25], elec-
tromagnetic radiation [15], or timing [24]. On the other hand, there exist also
active attacks that attempt to alter the computation data or flow and observe
corrupted results. The phenomenon of faults in cryptographic algorithms was
first addressed by Boneh et al. [8]. For a comprehensive reading we refer to
Koç [23, Chapters 13–18].

Differential Power Analysis There are several types of passive SCA’s against
AES depending on type of the leakage, among them, we will particularly focus
on a specific case of Differential Power Analysis (DPA). Let us consider that we
can measure voltage on a system bus where we expect to capture transfers of
AES intermediates. Such records will be referred to as the traces. Given a set of
plaintexts and respective traces, there exists a moment in time t0 when certain
intermediate value is being transferred over the bus. The goal is to guess a small
portion of the key and precompute the expected intermediate value. If the guess
is correct, we will find a big correlation between the precomputed intermediates
and values across the traces at t0. Otherwise, no significant correlation shall
occur at any position within the traces.

Specifically, we will consider individual bits of the first SBox output as the
intermediates, i.e., t = SBox(PT [i]⊕ k)[b] for i-th byte of a plaintext PT , a key
guess k and b-th bit of the SBox output. Such values will be referred to as the
targets or hypotheses, i.e., values that we expect to occur across the traces.

The attack proceeds as follows: we loop all 16 key byte positions i, all 256
guesses on i-th key byte k and all 8 target bit positions b. For each trace, indexed
by j, we compute the expected target value as

tj = SBox(PTj [i]⊕ k)[b]. (2)
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Based on the value of tj ∈ {0, 1}, we split the traces into two sets S0 and S1,
respectively. Note that for the correct key guess, the traces in S0 are expected
to have a low value at t0 and a high value in S1, respectively. Therefore we
compute absolute difference of means of the two sets D =

∣∣S̄1 − S̄0

∣∣ where S̄
denotes a mean trace, i.e., S̄ = 1

|S|
∑

t∈S t using point-wise trace addition. Then,

for the correct key guess, there shall emerge a clear peak at time t0, otherwise
the differences of means shall be small and blurry. For each key candidate, we
refer to the magnitude of the peak as the rank of the candidate. A pseudocode
for a derived attack will be given later.

Note 2. In case of a noisy measurement, the peak might be unclear. For this
reason, we rank the candidates – the higher rank, the more likely the guess is
correct. This might be later used also for brute force key recovery if the initial
key guess is incorrect – first we search the candidate bytes with lowest rank.

2.3 Adaptation of SCA to White-Box Attack Context

As introduced by Bos et al. [9], the powerful tools of SCA can be advanta-
geously used for an attack against white-box implementations of cryptographic
algorithms. Regarding white-box challenge implementations—de facto encryp-
tion oracles—the main benefit of such attacks is that they do not need knowl-
edge of particular implementation, often neither use of reverse engineering, which
makes them very universal and easy-to-mount. In this paper, we focus on pas-
sive attacks, however, active attacks like Differential Fault Analysis (DFA, first
introduced against DES [3], later also against obfuscated implementations [17]
and in particular against AES [14]) might be adapted as well while making it
probably the most powerful attack in the white-box attack context.

In their paper, Bos et al. adapted DPA (as introduced in Section 2.2) for an
attack against several white-box implementations; they call this adaptation the
Differential Computation Analysis (DCA). Instead of physical measurements,
they employed instrumentation tools like Valgrind [29] or PIN [26] to capture
program-memory interactions, i.e., addresses and/or contents of memory reads
and/or writes, referred to as the memory traces or memtraces.

For all challenges but one attacked by Bos et al., the results showed 100%
success rate while using only a couple of memtraces. Neither of these challenges
used any form of mathematical obfuscation of intermediates, i.e., the intermedi-
ates were directly observable in the memtraces; these challenges relied solely on
software obfuscation techniques.

In one particular challenge, Klinec [22] implemented Chow’s WBAES, hence
the AES intermediates were not directly observable in the memtraces. However,
even this implementation got, maybe surprisingly, broken. For their attack, Bos
et al. used an augmented set of targets:

T1 = SBox(PT [i]⊕ k), (3)

i.e., the output of the first SBox—the classical targets, cf. (2)—and

T2 = (PT [i]⊕ k)′ (4)
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where (·)′ stands for Rijndael inverse – a multiplicative inverse in Rijndael field
GF(28) modulo x8 + x4 + x3 + x + 1. The idea behind was motivated by the
construction of the original AES SBox:

SBox(X) = A(X ′) + B, (5)

where A is a linear mapping and B a constant byte.

Note 3. T1 targets are affine mappings of T2 targets and vice versa, cf. (3), (4)
and (5).

Note 4. In the rest of this paper, we will neglect constant bits, i.e., all affine
mappings will be considered as linear. Indeed, flipping the target bit only swaps
the sets S0 and S1 as defined for SCA, hence has no effect on the final result –
we are only interested in absolute difference of their means.

Bos et al. employed 500 memtraces with T1 targets and 2 000 memtraces with
T2 targets. In both cases, they achieved similar success rate – a key byte leaked
in about 30% of cases.

3 Analysis of DCA against Chow’s White-Box AES

First of all, recall that all of the target bits in T1 and T2 can be obtained by
a linear mapping of the first SBox output, cf. Note 3, and let us refresh the
operations within the first lookup table:

plaintext→ AddKey→ SBox→ MB ◦MC→ Enc−1

in table Type II

→ 1st intermediate→ . . .

Let us assume that we can get the intermediate value before the final Enc−1,
i.e., right after MB ◦MC. Such a value consists of 32 bits while each bit t′

can be computed as a linear mapping of the first SBox output, i.e., t′ = RT ·
SBox(PT [i] ⊕K[i]) for some vector R. Since MB is a random linear bijection,
then R is a random-like non-zero vector. Therefore, in some cases, R might
happen to be a standard basis vector, e.g., (0, 1, 0, . . . , 0), or it might be equal to
a row of A−1, cf. (5). Note that in such cases, a target from T1 or T2, respectively,
would perfectly fit t′. However, there are another 255−16 = 239 cases which are
not covered by T1,2 – let us define a complete set of such targets.

Definition 1. Let P and K be a plaintext and key byte, respectively. We define
the set of all linear AES-DCA targets as

Tlin =
{
RT · SBox(P ⊕K)

∣∣ R ∈ GF(2)8 \ (0, 0, . . . , 0)
}
. (6)

It follows that the set of targets Tlin fully covers the intermediates before the
final Enc−1, however, in the real implementation, Enc−1 is employed as well. It
follows that Enc actually poses the only protection against our linear AES-DCA
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targets. As per the results of Bos et al., some targets leak the key byte anyways,
hence let us focus on the (non-)linearity properties of Enc.

In the design of Chow’s WBAES, Enc is defined to be a random 4-bit bi-
jection while posing the only non-linear (confusion) element. They provide the
following argumentation: “Ideally for security, we would explicitly avoid linear
transformations. But randomly choosing bijections, essentially all will be non-
linear: . . . less than 0.000 002% are affine.” Hence they do not encourage for any
non-linearity check although it is a widely studied topic for regular ciphers by
methods of linear cryptanalysis, introduced by Matsui et al. [27].

On the one hand, the ratio of fully linear mappings is indeed extremely low,
on the other hand, DCA can exploit the intermediates even when there occurs
only one bit in Enc output that is linear in its input. Note that there are lot
more such 4-bit bijections – indeed, there are 2 ·4 · (24−1) ·8! ·8! of them among
16! bijections which is almost 1%. Since there are several Enc instantiations for
each key byte, 1% chance is very much non-negligible. Furthermore, DCA is
based on a physical SCA, i.e., it is designed to handle errors, cf. Note 2. For this
reason, even such Enc bijections that are linear in single output bit on majority
of inputs pose a weakness. There are obviously much more than 1% of such
bijections making the protection vulnerable to DCA with our Tlin targets.

Since our linear AES-DCA targets address all linear transformations of the
first-round AES intermediates, they can be advantageously applied to other
schemes that employ linear protection (or semilinear, like Chow’s WBAES).
Note that a random linear bijection is a handy masking technique since it can
easily combine several bytes together – thanks to its linearity. See, e.g., a re-
cent report by Goubin et al. [16] recovering the hardest challenge submitted to
WhibOx 2017 Contest Workshop [13] – the Adoring Poitras challenge1. In their
work, they introduce linear decoding analysis which also correctly assumes linear
encoding of intermediates.

4 Practical Attack & Results

First, we describe the DCA bitwise attack in detail and provide an overview
of the whole attacking procedure. Next, as the main goal of our experiments,
we confirm our hypothesis about leakage as introduced in Section 3, i.e., leakage
from the first set of tables Type II. Then we focus on a scenario with unknown key
while inspecting properties of false positives. Finally, we suggest a methodology
to estimate an optimal number of traces for this type of attack and evaluate
the optimum for Chow’s WBAES. Note that we performed all experiments on a
single core of Intel Core i5-7600K processor @ 4.1GHz, i.e., all execution times
are with respect to this hardware.

1 Available at https://whibox-contest.github.io/show/candidate/777. Accessed: Au-
gust, 2019.

https://whibox-contest.github.io/show/candidate/777
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4.1 Bitwise DCA

The most demanding part of our attack is the bitwise DCA/DPA attack as out-
lined in Section 2.2 – lots of memtrace-, i.e., vector-, additions are performed.
We implemented that part of the attack in C++ [19]. We summarize this attack
in Algorithm 1 where P , Trc, trg and B denote the arrays of plaintexts, respec-
tive traces represented in bits, target tables as per Definition 1, and attacked
byte number (i.e., 1 . . . 16), respectively. The output array dif is a list of key
candidates sorted by their rank, for each target bit.

Algorithm 1 Bitwise DCA/DPA attack.

1: function BitwiseDCA(P , Trc, trg, B)
2: // a 256-tuple of 8-tuples of triples: key guess, rank and leakage position

3: dif =
((

(0x00, 0.0, 0), . . . , (0x00, 0.0, 0)
)
, . . . ,

(
(0xff, 0.0, 0), . . . , (0xff, 0.0, 0)

))
4: for kg = 0x00 . . . 0xff do // key guess
5: absdif =

(
(0.0, . . . , 0.0), . . .

)
// an 8-tuple of vectors of trace bit-size

6: mean0,1 =
(
(0.0, . . . , 0.0), . . .

)
// both an 8-tuple of vectors of trace bit-size

7: num0,1 = (0, 0, 0, 0, 0, 0, 0, 0) // both an 8-tuple
8: for i = 1 . . . |P | do
9: p = P [i], trc = Trc[i]

10: hyp = trg[p[B]⊕ kg] // hypothesis, i.e., “SBox” output, cf. (2)
11: for b = 1 . . . 8 do // target bit
12: if hyp[b] == 0 then
13: mean0[b] += trc // most demanding
14: num0[b] += 1
15: else
16: mean1[b] += trc // most demanding
17: num1[b] += 1

18: for b = 1 . . . 8 do
19: if num0[b] 6= 0 then mean0[b] /= num0[b]
20: if num1[b] 6= 0 then mean1[b] /= num1[b]
21: absdif [b] =

∣∣mean1[b]−mean0[b]
∣∣

22: // maximal absolute difference and its position is found & saved
23: dif [kg][b] =

(
kg,max(absdif [b]), arg max(absdif [b])

)
24: sort dif [·][b] by rank

25: return dif

4.2 Steps of the Attack

The practical implementation of our attack consists of several tools and follows
the steps described in Algorithm 2.

Algorithm 2 Steps of the practical attack.
1: acquire memtraces
2: filter constant values from memtraces
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3: generate memtrace preview & identify leakage range
4: if found leakage range then go to 6
5: attack some byte (possibly first and/or last) & identify leakage range
6: crop traces to leakage range
7: run full attack, process & display results

All the tools are written in Ruby and published in our White-Box-DPA-Pro-
cessing toolkit [21]. Next we describe each step and/or component of the toolkit.

Trace Acquisition Our acquisition tool generates random AES plaintexts,
feeds them to the target WBAES implementation while acquiring the memtrace.
For this purpose, we employ Intel PIN [1] with our custom memory tracing
tools [20]. There are total four tools that enable to acquire contents or addresses
of memory reads or writes, respectively. As a reasonable initial number of traces,
for an unprotected implementation, even 25 is sufficient, for an implementation
with a semi-linear protection similar to Chow’s WBAES, lower hundreds of traces
are needed2. Acquisition of 200 traces of Klinec’s implementation took us roughly
4 minutes. If the number of traces shows to be insufficient during the attack,
our acquisition tool enables to acquire additional traces. Note that we acquired
contents of memory reads, i.e., we expect that there occur values from those
aforementioned white-box lookup tables.

Last but not least, it is highly important to have the traces well aligned, hence
it is recommended to turn off Address Space Layout Randomization (ASLR).
On Unix-like systems, this can be done by the command

$ setarch ‘uname -m‘ -R /bin/bash

Filtering Constant Regions In the memtraces, there occur several regions
which are identical across all traces, hence carry no information for the attack.
Our acquisition tool automatically creates a filtering mask based on a couple
of traces (by default 30 traces) and filters these regions out. As a result, there
remains no constant value across traces while the traces remain aligned. For 200
of Klinec’s traces, this step took us about 15 seconds.

Identify the Leakage Range from a Memtrace Preview Next, our tool
creates a memtrace preview: the x-axis represents the address space (partial and
usually “zoomed out” to fit reasonable dimensions), the y-axis represents the
execution time (top-bottom), memory writes are represented by a red pixel; see
Figure 1 (the green marker will be explained later). If we can clearly recognize
where SBoxes of the first AES round take place, we can skip the next step and
continue to cropping the traces to the leakage range.

2 Later we will discuss optimal number of traces for this type of WBAES and recom-
mend 200 traces.
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Fig. 1. Partial memtrace of memory writes of a naive AES implementation with 7th

byte leakage position emphasized in green. The memtrace is cropped within the 2nd

AES round.

Initial Attack to Identify the Leakage Range In case we are not sure
where exactly the leakage takes place, we recommend to attack single key byte
(the first and the last byte could possibly show the beginning and the end of
that range, respectively) and use our marker tool to emphasize the exact place
within the memory trace; cf. Figure 1. Details to the attacking procedure are
given in Section 4.2. For 200 of Klinec’s traces, attacking single key byte with
full traces took us less than 2 minutes.

Crop Traces to the Leakage Range Once we identified the leakage range,
we can further crop the traces by specifying the address and row intervals in
our cropping tool. This step is the most important one for the overall attack
acceleration. For Klinec’s traces, we cropped the traces from originally 2 456
entries to 197 entries, i.e., we reduced the traces as well as the attack complexity
by a factor of 12.

Once we decide to repeat the attack on the same implementation, only with
a different key, we can make use of the exact leakage position, hence making the
attack yet faster and ready for use with automated tools [10].

Full Attack At this point, everything is ready for the full attack. First, the
bitwise DCA attack is performed as per Algorithm 1 and detailed results are
saved, i.e., for each key byte, each attack target, each target bit, key candidates
are sorted by their rank together with the position of the maximum (i.e., the
leakage index). Second, these results are processed: for each such a piece of result,
relative gap between the rank of the two top candidates is computed and used as
a measure of candidate quality. With 200 of filtered Klinec’s traces, the first step
took us roughly 2 minutes for all 16 key bytes, the second step cca 20 seconds.
In Table 1, we show the results of the attack with Rijndael inverse taken as the
target.
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Note 5. In our results, we recognize two kinds of best candidates based on the
gap: if the gap is greater than 10%, it is referred to as the strong candidate,
otherwise it is referred to as the weak candidate. Since we know the key, we
can identify the position of the correct key byte within all guesses. In order to
recognize a successful attack, we emphasize it in case it occupies the top position:
in black � if it is a strong candidate, and in gray � for a weak candidate.

4.3 Confirmation of the Leakage Hypothesis about Chow’s WBAES

In order to confirm our hypothesis on the leakage point in Chow’s WBAES as
introduced in Section 3, we decided to perform two experiments:

1. reproduce the attack by Bos et al. which takes the values from memtraces,

2. modify Klinec’s implementation to dump the intermediates coming from the
first set of tables Type II—this is where leakage in the original attack is
expected to take place—and use them directly instead of memtraces.

We performed both attacks with identical setup, the only difference was in the
trace data origin – it either came from memtraces, or from a direct manual
dump. To our satisfaction, both results were perfectly identical. This confirms
our hypothesis that the vulnerable intermediates are those identified in Section 3,
i.e., the output of the first set of tables Type II. In the following experiments,
we used direct dumps from the modified implementation instead of memtraces
for performance reasons.

4.4 Blind Attack on Chow’s WBAES

In a real-world scenario where the key is unknown, we do not know at which
position the correct key byte is within the list of candidates. In order to suggest
a methodology to recognize the correct candidate, we need further observations
about how both correct and incorrect candidates behave. For this purpose, we
ran a set of attacks: we created 8 instantiations of the white-box tables, captured
500 traces and used all 255 targets as per Definition 1 – this makes altogether
32 640 attacks on individual key byte which took us almost 50 minutes.

The most significant problem is that there often occurs a strong, yet incorrect
top candidate (i.e., a false positive), cf. Table 1 (e.g., 10th key byte and 5th tar-
get bit with almost 20% gap). In our overall results, 22% of top candidates were
strong and correct with an average and maximal gap of 38% and 76%, respec-
tively. However, there were also 8% of (strong) false positives with an average
and maximal gap of 14% and 35%, respectively. It follows that a simple rule using
single gap threshold would work bad. On the other hand, we observed that the
same false positive does not appear to repeat very much across the 255 targets
for given key byte: the average number of repetitions of the best false positive
(for given key byte) was 1.75, the global maximum was only 3. A summary of
results will be given after we introduce another quantity in Section 4.5.
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Key byte
Target bit

1. bit 2. bit 3. bit 4. bit 5. bit 6. bit 7. bit 8. bit

1. 14.5 148 19.9 � 7.6 � 0.3 241 0.5 81 4.7 226 3.7 3 17.0 �

2. 4.5 164 12.9 218 3.3 187 33.7 � 7.3 54 0.3 117 0.2 167 30.4 �

3. 0.7 183 0.2 205 0.2 4 18.8 � 2.5 192 4.2 115 1.4 184 8.5 72

4. 2.3 91 1.5 � 12.9 163 2.2 59 2.5 68 0.5 152 0.2 219 2.6 162

5. 1.9 15 2.8 68 5.7 60 1.1 153 0.2 42 5.1 161 0.0 35 0.3 127

6. 30.2 � 9.7 210 7.6 101 6.5 135 1.0 2 35.6 � 28.0 � 0.2 58

7. 2.7 7 6.0 57 0.7 179 6.6 241 1.8 137 5.2 1 2.4 123 6.5 198

8. 50.8 � 3.3 211 1.4 198 2.1 251 1.7 155 2.4 255 35.2 � 4.6 176

9. 18.5 181 5.9 111 0.6 52 0.3 235 3.9 86 5.0 154 33.2 � 1.3 121

10. 0.8 38 6.2 152 20.5 � 26.0 � 19.3 111 0.9 137 27.8 � 34.5 �

11. 4.5 141 17.3 � 6.8 35 10.2 176 2.9 137 8.8 66 3.2 79 1.3 136

12. 24.1 � 4.0 206 5.6 113 2.5 213 5.6 69 2.3 210 34.7 � 2.1 77

13. 4.2 24 5.9 246 2.8 244 0.2 15 30.4 � 3.3 � 9.1 125 11.1 34

14. 49.7 � 1.7 248 4.9 33 20.5 � 7.6 98 16.7 252 14.7 � 29.9 �

15. 6.5 139 0.6 126 6.3 16 5.4 37 2.3 64 3.6 1 3.6 � 5.8 100

16. 17.5 157 40.7 � 5.8 105 0.1 37 23.9 � 14.2 184 0.1 211 2.1 17

Table 1. DCA using 200 memtraces and 8 bits of Rijndael inverse as targets. For each key byte and each target bit, percentual gap of
the best candidate and position of the correct key byte are given. Note that the position ranges from 0 to 255 while 0 is replaced with
� or � for a strong or a weak candidate, respectively; cf. Note 5.
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Suggested Strategy We suggest the following strategy: for each key byte, keep
looping the 255 targets until any strong candidate exceeds a cumulative bound
of 50% with its gaps. Note that if such a candidate were a false positive, it would
need about 4 average gaps of a false positive to exceed the bound, which is still
more than ever observed number of repetitions of a false positive. Even if bad
things happen in a rare case, we can possibly increase the cumulative bound or
brute-force the least confident key byte(s). Note that a similar strategy can be
derived to other schemes than Chow’s WBAES.

4.5 Optimal Number of Traces

In their attacks, Bos et al. used 500 and 2 000 traces to attack Chow’s WBAES,
let us now have a look at results of the attack with much less traces, namely
100, 200, 300 and 500 traces. For each number of traces, we attacked all of
our 8 instantiations and observed ratios of strong candidates (both correct and
incorrect) together with their average gap; see results in Table 2. Note that the
number of repetitions of false positives remained up to three.

With less traces, the number of correct candidates and their average gap
decrease, i.e., we need to use more targets in order to reach the cumulative
bound, and vice versa. Hence our goal is to give a reasonable estimate on the
optimal number of traces in terms of computational effort. For this purpose, we
introduce the reduced cost of gap as

C(n, s, g) =
n

s · g
, (7)

where n stands for the number of traces, s for the average success rate and g
for the average gap of a strong candidate. Note that this quantity corresponds
with the average computational effort: indeed, the more traces, the more effort,
the better success rate or the bigger average gap, the less effort. According to
Table 2, the lowest value of reduced cost of gap was achieved for 200 traces,
therefore we suggest to use 200 traces in this scenario.

Traces 100 200 300 500

Correct candidates 6.5% 17% 19% 22%

Average gap of correct candidates 22% 29% 34% 38%

False positives 2.3% 7.5% 8.2% 8.3%

Average gap of false positives 9.8% 14% 14% 14%

Reduced cost of gap 7 000 4 100 4 600 6 000

Table 2. Ratios and average gaps of correct and incorrect strong candidates, respec-
tively, and reduced cost of gap, for different numbers of traces.
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5 Conclusions

After a brief overview of white-box cryptography and Chow’s WBAES, we re-
called the idea of SCA usage in the white-box context, pioneered by Bos et al. We
highlighted the abnormal behavior of their attack against Chow’s WBAES, for
which we proposed a theoretical explanation. The problem of Chow’s WBAES
has shown to be linearity of the Enc bijection which was intended to be non-
linear. Although Chow et al. provided a reasoning about its non-linearity, it is
not sufficient against DCA anymore, in particular when using our extended set
of linear AES-DCA targets. We motivated the use of our targets against other
implementations that use (semi-)linear masking of intermediates.

In the experimental part, we described our tools and, in particular, we con-
firmed our hypothesis by a comparison of two differently obtained sets of detailed
results. Next, we focused on the behavior of false positives in case of a blind at-
tack and suggested a strategy for this purpose. Finally, we derived an optimal
number of traces for this kind of attack in terms of average computational cost
to make the attack effective. With resulting 200 of filtered traces of Klinec’s
implementation, we ran the attack in less than two and a half minutes on our
hardware.
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