
����������
�������

Citation: Pokorný, D.; Socha, P.;

Novotný, M. Equivalent Keys:

Side-Channel Countermeasure for

Post-Quantum Multivariate

Quadratic Signatures. Electronics

2022, 11, 3607. https://doi.org/

10.3390/electronics11213607

Academic Editor: Alexander

Barkalov

Received: 28 September 2022

Accepted: 1 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Equivalent Keys: Side-Channel Countermeasure for
Post-Quantum Multivariate Quadratic Signatures
David Pokorný , Petr Socha and Martin Novotný *

Department of Digital Design, Faculty of Information Technology, Czech Technical University in Prague,
160 00 Prague, Czech Republic
* Correspondence: martin.novotny@fit.cvut.cz

Abstract: Algorithms based on the hardness of solving multivariate quadratic equations present
promising candidates for post-quantum digital signatures. Contemporary threats to implementations
of cryptographic algorithms, especially in embedded systems, include side-channel analysis, where
attacks such as differential power analysis allow for the extraction of secret keys from the device’s
power consumption or its electromagnetic emission. To prevent these attacks, various counter-
measures must be implemented. In this paper, we propose a novel side-channel countermeasure
for multivariate quadratic digital signatures through the concept of equivalent private keys. We
propose a random equivalent key to be generated prior to every signing, thus randomizing the
computation and mitigating side-channel attacks. We demonstrate our approach on the Rainbow
digital signature, but since an unbalanced oil and vinegar is its special case, our work is applicable to
other multivariate quadratic signature schemes as well. We analyze the proposed countermeasure
regarding its properties such as the number of different equivalent keys or the amount of required
fresh randomness, and we propose an efficient way to implement the countermeasure. We evaluate
its performance regarding side-channel leakage and time/memory requirements. Using test vector
leakage assessment, we were not able to detect any statistically significant leakage from our protected
implementation.

Keywords: embedded systems; multivariate quadratic signature; post-quantum cryptography;
side-channel security

1. Introduction

In the past few decades, computer devices have become an essential part of our
everyday lives. They are used throughout all industries, including banking, medicine,
transportation, and entertainment. Various embedded computer systems are used to control
payments, pacemakers, and trains, and most of us carry them in our own pockets every
day. In the interconnected world of Industry 4.0, the Internet of Things, cloud computing,
and machine learning, our privacy, security, and safety are more endangered than ever [1].
To counteract these modern-day threats, numerous security measures must be taken to
provide confidentiality, authenticity, integrity, and more.

Various cryptographic primitives are widely used, including symmetric algorithms
such as AES [2] and asymmetric algorithms such as RSA [3] or based on elliptic curves [4].
One of the significant threats to such asymmetric cryptographic algorithms is quantum
computation, which is expected to effectively break RSA and ECC cryptosystems. This
is due to Shor’s algorithm [5], which allows prime factorization and discrete logarithm
solving in polynomial time, compared to exponential time on a classical computer. For
this reason, the National Institute of Standards and Technology (NIST) of the United States
Department of Commerce has initiated a process to standardize quantum-resistant public
key cryptographic algorithms. The digital signature candidates in the third round were
CRYSTALS-Dilithium [6], FALCON [7], both lattice-based schemes, and Rainbow [8], a

Electronics 2022, 11, 3607. https://doi.org/10.3390/electronics11213607 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213607
https://doi.org/10.3390/electronics11213607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3945-0087
https://orcid.org/0000-0003-1219-4677
https://orcid.org/0000-0001-6446-7257
https://doi.org/10.3390/electronics11213607
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213607?type=check_update&version=2

Electronics 2022, 11, 3607 2 of 21

multivariate quadratic scheme. Both lattice-based signatures have been currently recom-
mended for standardization, with some multivariate quadratic candidate expected to be
further evaluated in the fourth round. In this paper, we focus on multivariate quadratic
signature schemes, which, besides Rainbow, also include the Unbalanced Oil and Vinegar
(UOV) [9] and LUOV [10] schemes.

Besides classical cryptanalysis, side-channel analysis poses a threat to cryptographic
implementations in general. Attacks such as differential power analysis [11] and correlation
power analysis [12,13] exploit information leakage in the side-channels, such as power
consumption or electromagnetic radiation [14]. More complex attacks include template
attacks [15,16] and machine-learning-based attacks [17–19]. Successful side-channel attacks
on multivariate quadratic signature schemes were presented in [20,21]. Various counter-
measures against these kinds of attacks have been proposed in the literature, typically
classified as either hiding or masking. Hiding countermeasures aim to conceal the leaked
information in noise, e.g., by using custom secure digital logic [22,23] or additional mod-
ules such as noise generators, clock randomization, or current equalizers [24,25]. Masking
countermeasures split the sensitive variable into multiple variables using random masks,
thus making it difficult for the attacker to predict any intermediate values and attack.
Masking countermeasures include threshold implementations [26,27] or domain-oriented
masking [28]. Lightweight masking countermeasures have been proposed for multivariate
cryptography, based on digest masking using a scalar mask [20,21], introducing only a little
masking entropy. A more complex countermeasure, based on splitting the central map
solution of Rainbow and randomizing the signing process, was presented in [29]. However,
no evaluation (such as test vector leakage assessment) of the proposed countermeasures
was presented in either paper. Most recently, a novel cryptanalytic attack on the Rainbow
signature scheme was presented in [30], requiring reexamination of the proposed algorithm
parameters and their security level.

Our Contribution

In this paper, we propose a novel side-channel countermeasure for multivariate cryp-
tography based on private key randomization. We continue the work presented in [31]
and introduce the concept of equivalent private keys, i.e., a class of private keys with the
same public key. We propose a new private key to be generated prior to every signing. The
adversary would then be forced to target the whole class instead of a fixed private key,
making it difficult to mount a side-channel attack. We demonstrate our approach on the
Rainbow algorithm. Since the UOV is a special (single-layered) case of Rainbow, our work
is applicable to different multivariate cryptography algorithms as well.

We first describe the Rainbow algorithm and the notation used in Section 2. In Section 3,
we introduce the general concept of equivalent keys and analyze their properties such as
the number of different keys or required random bits. We further propose an efficient way
to generate an equivalent key in Section 4, i.e., with fewer computational resources and
randomness. Finally, we evaluate the performance of our countermeasure in Section 5
in terms of side-channel leakage and time and memory requirements. We were not able
to detect any statistically significant side-channel leakage using an attack-independent
test vector leakage assessment; we show that the overhead is reasonable in comparison to
another state-of-the-art countermeasure.

2. Rainbow

Rainbow is a post-quantum digital signature, a generalization of the oil and vinegar
signature scheme [8]. Its security depends on the fact that solving m quadratic equations
for n variables becomes very difficult. These equations are defined by a central map F,
which consists of multivariate quadratic polynomials. The central map is structured so that
it is possible to solve F(x1, . . . , xn) = (y1, . . . , ym) using a linear equation solver. In a public
key, the special structure of the central map is hidden by two linear maps, S and T, applied
on an input and an output of the central map. The central map is layered, where each layer

Electronics 2022, 11, 3607 3 of 21

defines two types of variables: vinegar variables for known variables (randomly generated
or computed from the prior layer) and oil variables for unknown variables (to be computed
using polynomials in the given layer). In this paper, we used the version of the Rainbow
algorithm as defined in the submission to the NIST competition [32].

Let F be a finite field and v1, o1, o2 ∈ N the parameters of the two-layered version
of Rainbow. The parameters define the number of variables and the sizes of the layers.
The first layer consists of o1 quadratic polynomials with v1 vinegar variables with indices
V1 = {1, 2, . . . , v1} and o1 oil variables with indices O1 = {v1 + 1, . . . , v1 + o1}. The second
layer contains o2 quadratic polynomials with v2 = v1 + o1 vinegar variables with indices
V2 = {1, 2, . . . , v2} and o2 oil variables with indices O2 = {v2 + 1, . . . , v2 + o2}. Overall, we
have m = o1 + o2 polynomials with n = v1 + o1 + o2 variables.

The central map F = (f (v1+1), f (v1+2), . . . , f (n)) is an m-tuple of n-variate quadratic
polynomials. These polynomials, indexed by k ∈ O1 ∪O2, are defined as:

f (k)(x1, . . . , xn) := ∑
i,j∈Vl

i≤j

α
(k)
i,j xixj + ∑

i∈Vl
j∈Ol

β
(k)
i,j xixj + ∑

i∈Vl∪Ol

γ
(k)
i xi + δ(k), (1)

where α
(k)
i,j , β

(k)
i,j , γ

(k)
i , δ(k) ∈ F are term coefficients and l ∈ {1, 2} is such that k ∈ Ol .

For simplicity, we changed the notation in Equation (1) in the following sense:

• We restricted the polynomials, omitting the linear and absolute parts of the poly-
nomials in the central map, resulting in quadratic forms. These coefficients are not
necessary for Rainbow’s security, but add more complexity. The reference imple-
mentation submitted to the standardization process considers these coefficients in
the documentation, but they were not implemented in the code. Nevertheless, the
countermeasure discussed in this paper can be applied to the original polynomials
defined in Equation (1) as well.

• We united the α and β coefficients into the λ coefficients for simplicity of notation and
also included zero coefficients as described in Equation (2). We did not allow setting
any (by definition) zero coefficient to a non-zero value, so there is no change from the
original definition.

λ
(k)
i,j :=

α
(k)
i,j (k ∈ O1), (i, j ∈ V1), (i ≤ j),

β
(k)
i,j (k ∈ O1), (i ∈ V1), (j ∈ O1),

α
(k)
i,j (k ∈ O2), (i, j ∈ V2), (i ≤ j),

β
(k)
i,j (k ∈ O2), (i ∈ V2), (j ∈ O2),

0 otherwise.

(2)

Applying our changes, we obtain a simple notation of the central map polynomials,
equivalent to Equation (1):

f (k)(x) = ∑
i,j∈n̂

λ
(k)
i,j · xi · xj, (3)

where k ∈ O1 ∪O2, n̂ = {1, 2, . . . , n} and x = (x1, . . . , xn).
In Rainbow, the structure of the central map F (described in Equation (1)) is hidden

using two random invertible affine maps S : Fm → Fm and T : Fn → Fn. Similar to the
linear and absolute parts of the central map polynomials, we also omitted translations
of the affine maps. Therefore, we used two linear maps represented by regular matrices
S ∈ Fm×m, T ∈ Fn×n. This is also consistent with the reference implementation.

Electronics 2022, 11, 3607 4 of 21

2.1. Central Map in Matrix Representation

For compact writing, we rewrite the quadratic forms in the central map as a product
of matrix–vector multiplication for k ∈ O1 ∪O2:

f (k)(x) = xᵀF(k)x = xᵀ

F(k)
1,1 F(k)

1,2 F(k)
1,3

0 F(k)
2,2 F(k)

2,3
0 0 0

x,

F(k)
1,1 = {λ(k)

i,j }i,j∈V1 ,

F(k)
1,2 = {λ(k)

i,j }i∈V1,j∈O1 ,

F(k)
1,3 = {λ(k)

i,j }i∈V1,j∈O2 ,

F(k)
2,2 = {λ(k)

i,j }i,j∈O1 ,

F(k)
2,3 = {λ(k)

i,j }i∈O1,j∈O2 .

(4)

The quadratic form f (k)(x) can be expressed using a matrix F(k). This matrix is
partitioned according to the structure of the central map. Submatrices F(k)

1,1 , F(k)
2,2 are upper

triangulars and correspond to alpha coefficients. Submatrices F(k)
1,2 , F(k)

1,3 , F(k)
2,3 correspond to

beta coefficients. Specifically for the first layer, we obtain:

(k ∈ O1) =⇒ F(k) =

F(k)
1,1 F(k)

1,2 0
0 0 0
0 0 0

. (5)

The central map can be expressed as a vector of m matrices (representing quadratic
forms):

F =

F(v1+1)

F(v1+2)

...
F(n)

. (6)

Secret key SK can be expressed and stored as:

SK = (S−1, F, T−1)↔ (S−1, F, T−1), (7)

where

F : Fn → Fm

x 7→ y = F(x) =

f (v1+1)(x)
f (v1+2)(x)

...
f (n)(x)

 =

xᵀF(v1+1)x
xᵀF(v1+2)x

...
xᵀF(n)x

.
(8)

The public key contains only a quadratic map P defined as

P := S ◦ F ◦ T. (9)

Electronics 2022, 11, 3607 5 of 21

2.2. Signing and Verification Process

For document d, random salt r, and a secret key SK = (S−1, F, T−1), we define

h := hash(hash(d)|| r),
y := S−1(h),

x := F−1(y),

z := T−1(x),

(10)

where h, y ∈ Fm and x, z ∈ Fn. The pair (z, r) is called a signature.
The signature (z, r) of the document d is valid iff h = h′, where

h := hash(hash(d)|| r),
h′ := P(z).

(11)

3. Equivalent Key

The main idea of the equivalent key is to change the secret key SK into some other SK,
which is equivalent to the original one, i.e., SK and SK both have the same public key. This
equivalency was previously used for storage, computation, and randomness reduction,
where only the normal form of the key was generated [31]. Our countermeasure is based on
the generation of the equivalent key before each signing process. We therefore substituted a
fixed key with an equivalence class containing a huge number (as shown in Equation (28))
of different, but equivalent, keys.

In our work, the equivalent key can be derived from the original key using two linear
maps A and B, represented as matrices A and B, which change all three maps contained in
a secret key without changing their composition:

P = S ◦ F ◦ T,

P = S ◦ (A−1 ◦ A) ◦ F ◦ (B ◦ B−1) ◦ T,

P = (S ◦ A−1) ◦ (A ◦ F ◦ B) ◦ (B−1 ◦ T).

(12)

With this in mind, we define the secret key SK derived from SK as

SK = (S−1, F, T−1),

SK = (A ◦ S−1, A ◦ F ◦ B, T−1 ◦ B).
(13)

The pair (A, B) is called Gauss sustaining transformation, where the representing
matrices A and B cannot be chosen arbitrarily. They are composed with the central map F,
which must maintain its special structure.

The necessary constraint is the invertibility of these matrices due to the signing process,
where the inverse central map must be computed. Therefore, A and B must be regular;
thus, det(A) 6= 0 and det(B) 6= 0. The compositions A ◦ S−1 and T−1 ◦ B can be computed
simply as AS−1 and T−1B. The composition A ◦ F ◦ B is discussed in the following sections.

3.1. Composition A ◦ F

Let A : Fm → Fm, h 7→ A(h) = Ah, where A ∈ Fm×m is a regular matrix. The
composition A ◦ F is then

(A ◦ F)(x) = A

f (v1+1)(x)
f (v1+2)(x)

...
f (n)(x)

 =

∑m

i=1 A1,i f (v1+i)(x)
∑m

i=1 A2,i f (v1+i)(x)
...

∑m
i=1 Am,i f (v1+i)(x)

, (14)

Electronics 2022, 11, 3607 6 of 21

and ∀k ∈ {1, . . . , m} :

[A ◦ F]k(x) =
m

∑
i=1

Ak,i · f (v1+i)(x) =
m

∑
i=1

Ak,i · (xᵀF(v1+i)x) = xᵀ
m

∑
i=1

(Ak,i · F(v1+i))x. (15)

The composition is equivalent to a linear combination of F matrices. In the following
equation, we show how arbitrary A affects the structure of the central map:

m

∑
i=1

Ak,i · F(v1+i) =
m

∑
i=1

Ak,i ·

F(v1+i)
1,1 F(v1+i)

1,2 F(v1+i)
1,3

0 F(v1+i)
2,2 F(v1+i)

2,3
0 0 0

. (16)

To maintain the special structure for the first layer (k ∈ {1, . . . , o1}), as described in
Equation (5), we must fulfill the following restrictions:

m

∑
i=1

Ak,i · F
(v1+i)
1,3 = 0,

m

∑
i=1

Ak,i · F
(v1+i)
2,2 = 0,

m

∑
i=1

Ak,i · F
(v1+i)
2,3 = 0.

(17)

Since, ∀i ∈ O1 : F(i)
1,3, F(i)

2,2, F(i)
2,3 are zero matrices, Equation (17) can be rewritten as

m

∑
i=o1+1

Ak,i · F
(v1+i)
1,3 = 0,

m

∑
i=o1+1

Ak,i · F
(v1+i)
2,2 = 0,

m

∑
i=o1+1

Ak,i · F
(v1+i)
2,3 = 0.

(18)

This restriction can be trivially satisfied by the following condition:

(∀k ∈ {1, . . . , o1})(∀i ∈ {o1 + 1, . . . , m}) : Ak,i = 0. (19)

Regarding the second layer, the arbitrary A maintains its polynomial structure by
itself, and therefore, no further restrictions are necessary.

An applicable matrix A ∈ Fm×m is therefore

A =

(
A1,1 0
A2,1 A2,2

)
, (20)

where A1,1 ∈ Fo1×o1 , A2,1 ∈ Fo2×o1 , A2,2 ∈ Fo2×o2 . Matrix A must be regular; therefore, A1,1
and A2,2 are arbitrary regular matrices and A1,2 is an (possibly singular) arbitrary matrix.

From the matrix A, we deduce that the linear combination is performed separately in
layers (A1,1 and A2,2), and quadratic polynomials from the first layer can be combined into
the second layer (A2,1).

Electronics 2022, 11, 3607 7 of 21

3.2. Composition F ◦ B

Let B : Fn → Fn, x 7→ B(x) = Bx, where B ∈ Fn×n is a regular matrix. The composi-
tion F ◦ B is then

(F ◦ B)(x) = F ◦ (Bx) =

f (v1+1)(Bx)
f (v1+2)(Bx)

...
f (n)(Bx)

, (21)

and, ∀k ∈ {1, . . . , m}:

[(F ◦ B)]k(x) = f (v1+k)(Bx) = (Bx)ᵀF(v1+k)Bx = xᵀ(BᵀF(v1+k)B)x. (22)

This composition changes every quadratic polynomial separately. Before we consider
the restrictions on the matrix B, let us first introduce the following lemma.

Lemma 1. Every quadratic form can be represented as an upper triangular matrix.

Proof. Let q ∈ F[x] be a quadratic form represented by matrix Q, then U is an upper
triangular representation of q, where U is

∀i, j ∈ {1, . . . , n} : Ui,j =

Qi,i i = j,
Qi,j +Qj,i i < j,
0 otherwise.

(23)

Then,

q(x) = xᵀQx = ∑
i,j∈{1,...,n}

Qi,jxixj = ∑
i∈{1,...,n}

Qi,ix2
i + ∑

i,j∈{1,...,n}
i<j

(Qi,j +Qj,i)xixj = xᵀUx. (24)

Let : Fn×n → Fn×n;Q 7→ U be a function, where U is an upper triangular matrix,
such that ∀x ∈ Fn : xᵀQx = xᵀUx.

In Equation (25), we show how matrix B changes the structure of a polynomial in
the central map. We used the same partitioning of the matrix B as we used for the matrix
F(k). Size compatibility for the matrix multiplication is guaranteed thanks to the symmetry
of block sizes. We further applied the function , as it does not change the concerned
polynomial and it helps us with the wanted structure. It ensures the upper triangular
submatrices on the diagonal, which are required by the definition of Rainbow.

B =

B1,1 B1,2 B1,3
B2,1 B2,2 B2,3
B3,1 B3,2 B3,3

,

k ∈ O1 : (BᵀF(k)B) =

F′(k)1,1 F′(k)1,2 0
0 0 0
0 0 0

,

k ∈ O2 : (BᵀF(k)B) =

F′(k)1,1 F′(k)1,2 F′(k)1,3

0 F′(k)2,2 F′(k)2,3
0 0 0

.

(25)

Electronics 2022, 11, 3607 8 of 21

Solving this system of equations with matrix B as a variable for arbitrary central map
F, where the right sides of the equations are zeroes, we obtain:

B =

B1,1 0 0
B2,1 B2,2 0
B3,1 B3,2 B3,3

, (26)

where non-zero submatrices are arbitrary submatrices, except that matrix B must be regular,
and therefore, submatrices B1,1, B2,2, B3,3 must be regular.

For an insight into what is happening to the vector x (which elements are the variables
in the central map), we can partition x into three different types of variables: vinegar
variables of the first layer (xv

1 ∈ Fv1), oil variables of the first layer (xo
1 ∈ Fo1), and oil

variables of the second layer (xo
2 ∈ Fo2). If we apply matrix B to the vector x, we obtain:

Bx =

B1,1 0 0
B2,1 B2,2 0
B3,1 B3,2 B3,3

xv
1

xo
1

xo
2

 =

 B1,1xv
1

B2,1xv
1 + B2,2xo

1
B3,1xv

1 + B3,2xo
1 + B3,3xo

2

. (27)

In this situation, the variables to solve are not defined only by vector x, but the vector
Bx. To be able to sign, it is necessary not to mix the vinegar variable with the oil variables
of each layer. At the beginning of the signing process, we used B1,1xv

1 instead of xv
1. Vector

xv
1 is randomly generated, thus known. We can easily compute B1,1xv

1. Next, the first layer
is solved, where we computed B2,1xv

1 + B2,2xo
1 instead of xo

1. We can immediately substitute
B2,1xv

1, which is already known. We still obtain a system of the linear equations that has
only variables of the vector xo

1. In the end, the second layer is solved. We can first substitute
B3,1xv

1 + B3,2xo
1, and again, we obtain only a system of linear equations. No oil and vinegar

variables (of the same layer) are mixed. This was only an insight into why the inversion of
the central map can be still computed. In the implementation, matrix B is incorporated in
the central map (as a generator of the equivalent key).

3.3. Analysis of an Equivalent Key

In this section, we discuss the basic properties of the equivalent key. We concentrate
only on equivalent keys that can be generated according to Equation (13), with the maps A
and B defined in Equation (20) and Equation (26). We start with the number of equivalent
keys, and we calculate entropy where applicable. Then, we state the benefits of our masking
scheme. For the analysis in this section, we considered two sets of Rainbow parameters:

• Ia (128 bit security): Fq = GF(16), v1 = 36, o1 = o2 = 32;
• Vc (256 bit security): Fq = GF(256), v1 = 96, o1 = 36 and o2 = 64.

We note that these parameters, while suggested in the NIST standardization process,
are probably already inadequate due to the recently presented attacks [30].

Lemma 2. Let Ml,s(Fq) = {l × s matrices over Fq} be a set. The cardinality of the set is
|Ml,s(Fq)| = ql·s.

Lemma 3. Let Mn(Fq) = {n× n matrices over Fq}, with the matrix multiplication, be the full
linear monoid. The order of the monoid is |Mn(Fq)| = qn2

.

Lemma 4. Let GLn(Fq) = {n× n invertible matrices over Fq}, with the matrix multiplication,
be the general linear group. The order is |GLn(Fq)| = ∏n−1

k=0 (q
n − qk) = qn2

(q−n; q)n. (q-
Pochhammer symbol: (a; q)n := ∏n−1

k=0 (1− aqk), n > 0, defined inter alia in [33]. For example:
the number of 10 × 10 regular matrices over GF(16) is |GL10(F16)| ≈ 0.9336 · 16100, where
(16−10; 16)10 ≈ 0.9336. Symbol (q−n, q)n denotes the ratio between regular matrices n× n and
all matrices n× n over Fq.)

Electronics 2022, 11, 3607 9 of 21

The proofs of these three lemmas are well known [34].

Theorem 1. The number of different equivalent keys, over a fixed secret key SK, is

qv1(v1+o1+o2)+2(o2
1+o1o2+o2

2)(q−v1 ; q)v1((q
−o1 ; q)o1)

2((q−o2 ; q)o2)
2. (28)

This is an exact number, where the left part q(...) describes the number of different
combinations of matrices A and B. The remaining part counts for the cases where A and B
are regular. For GF(16), its value is ≈ 0.7092, and for GF(256) it is ≈ 0.9805. This value is
dependent on the values v1, o1, o2, but it converges with these parameters extremely fast.
For GF(16), the difference between v1 = o1 = o2 = 10 and v1 = o1 = o2 = 1000 is less then
10−12.

Proof. (Number of different equivalent keys) We show that the number of equivalent keys
is the number of possible non-equal matrices A multiplied by the number of possible
non-equal matrices B. This holds because both matrices are applied to different parts
of the secret key (maps S and T), so they cannot interfere with each other, and they are
both generated independently. We discuss the number of keys for matrix A only, and the
same procedure can be applied to matrix B. Let A be the set of matrices with the structure
defined in Equation (20) and a regular matrix S ∈ GLm(Fq) be the representation of the
linear map S.

First, we show that the lower bound of the number of equivalent keys generated by
A is equal to the cardinality of the set A. This is because a regular matrix S is multiplied
by regular matrices from the set A. Thus, two distinct matrices A, A′ ∈ A ⊂ GL cannot
generate the same product matrix:

∀A, A′ ∈ GLm(Fq) : A 6= A′ =⇒ AS 6= A′S. (29)

Therefore, each distinct matrix in A generates a different equivalent key; hence, the
cardinality of the set A is the lower bound of the number of different equivalent keys
generated by A.

Second, we show that the cardinality of the set A is also the upper bound of the
number of different equivalent keys generated by A, since every equivalent key can be
reached by a multiplication with a single A ∈ A. Let us examine a product of two matrices
A, A′ ∈ A:

AA′ =
(

A1,1A′1,1 0
A2,1A′1,1 + A2,2A′2,1 A2,2A′2,2

)
. (30)

The matrix AA′ has the same structure as the matrices A and A′. On the diagonal, we
have the products of the elements of GL, which also result in an element of the GL, and
the submatrix [AA′]2,1 can be an arbitrary matrix, thus AA′ ∈ A. In other words, every
key reachable by subsequent multiplications with two matrices from A can be reached by
a single multiplication with some matrix from A:

(∀A, A′ ∈ A)(∃A′′ ∈ A) : A′(AS) = A′′S. (31)

Therefore, the upper bound of the number of equivalent keys generated by A is the
size of the set A.

The previous statements imply that the number of equivalent keys generated by A is
equal to the size of the set A. Every matrix A ∈ A has four parts: two submatrices from
GL, one from Mo1,o2(Fq), and a zero submatrix. All matrices are independent, so the total
number of matrices is the product of the numbers of different submatrices:

|GLo1(Fq)| · |GLo2(Fq)| · |Mo1,o2(Fq)| · 1 =

= q(o
2
1+o2

2+o1o2)(q−o1 ; q)o1(q
−o2 ; q)o2 .

(32)

Electronics 2022, 11, 3607 10 of 21

The number of different matrices B can be computed in a similar fashion:

|GLv1(Fq)| · |GLo1(Fq)| · |GLo2(Fq)| · |Mv1,o1(Fq)| · |Mv1,o2(Fq)| · |Mo1,o2(Fq)| =

= q(v
2
1+o2

1+o2
2+v1o1+v1o2+o1o2)(q−v1 ; q)v1(q

−o1 ; q)o1(q
−o2 ; q)o2 .

(33)

By multiplying the results in Equation (32) and Equation (33), we obtain the total
number of equivalent keys, as stated in Equation (28).

The number of equivalent keys is approximately 169744 · 0.7097 ≈ 238976 and 25634208 ·
0.9805 ≈ 2273664 for the Ia and Vc parameters, respectively. If the matrices A and B are
generated from a uniform distribution, the entropy of the generated equivalent key for the
Ia and Vc parameters is ≈38,976 Sh and ≈273,664 Sh, respectively.

The beneficial property of an equivalent key scheme is an option to forget the original
key and keep only an equivalent key. We were able to generate an equivalent key from an
already-computed equivalent key. The equivalent key (or more of them) can be generated
and prepared at any time prior to the signing process. The signing process itself then has
no overhead.

4. Efficient Implementation

In Section 3, we discuss the equivalent key defined by matrices A and B. However,
we propose choosing only a subset of these matrices with respect to:

• Calculation performance;
• Amount of fresh randomness necessary;
• Entropy of the generated equivalent key;
• Implementation size and simplicity;
• Total number of keys equivalent to each public key.

With respect to the aforementioned desires, we propose using the following submatri-
ces to generate the equivalent keys:

Mn :=

M =

1 m1 0 . . . 0
0 1 m2 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

mn 0 0 . . . 1

| det(M) 6= 0

, (34)

where m1, . . . , mn ∈ Fq, and the condition for regularity is

det(M) 6= 0 ⇐⇒
n

∏
i=1

mi 6= (−1)n+1. (35)

The equivalent key generator is a tuple (A, B) defined as

A :=

(
A(1) 0

0 A(2)

)
, B :=

B(1) 0 0
0 B(2) 0
0 0 B(3)

, (36)

Electronics 2022, 11, 3607 11 of 21

where A(1), B(2) ∈ Mo1 , A(2), B(3) ∈ Mo2 , B(1) ∈ Mv1 . The proposed generator form is
further justified in Section 4.1. The generator matrices are defined as

Ak,l =

1 k = l,
ak (k ∈ {1, . . . , o1}) ∧ (l = |k + 1|o1),
ak (k ∈ {o1 + 1, . . . , m}) ∧ (l = |k− o1 + 1|o2 + o1),
0 otherwise,

Bk,l =

1 k = l,

b(1)k (k ∈ {1, . . . , v1}) ∧ (l = |k + 1|v1),

b(2)k−v1
(k ∈ {v1 + 1, . . . , v2}) ∧ (l = |k− v1 + 1|o1 + v1),

b(3)k−v2
(k ∈ {v2 + 1, . . . , n}) ∧ (l = |k− v2 + 1|o2 + v2),

0 otherwise,

(37)

where |a|b := (a − 1 mod b) + 1 is the modulo operation with offset (e.g., it holds that
|m|m = m and |m + 1|m = 1). Indexing from zero would result in using a regular modulo
operation instead. Matrices A and B can be stored as vectors of their non-trivial values:

(a1, a2, . . . , am), (b
(1)
1 , . . . , b(1)v1 , b(2)1 , . . . , b(2)o1 , b(3)1 , . . . , b(3)o2). (38)

For further analysis, in Equation (39), we show the probability that the randomly
generated matrix from the definition in Equation (34) (i.e., the matrix with generated values
m1, . . . , mn) over Fq is regular. In Equation (39), we omit the set {1, . . . , n} in all quantifiers
∀i ∈ {1, . . . , n} and ∃i ∈ {1, . . . , n} since it is always identical, and we write only ∀i and ∃i
for simplicity.

P(det(M) 6= 0 | M ∈ Mn) =

= P

(
∃i : mi = 0∨

(
∀i : mi 6= 0∧

n

∏
i=1

mi 6= (−1)n+1

))

= P(∃i : mi = 0) + P

(
∀i : mi 6= 0∧

n

∏
i=1

mi 6= (−1)n+1

)

= 1− P(∀i : mi 6= 0) + P

(
n

∏
i=1

mi 6= (−1)n+1
∣∣∣ ∀i : mi 6= 0

)
· P(∀i : mi 6= 0)

= 1−
(

q− 1
q

)n
+

(
q− 2
q− 1

)(
q− 1

q

)n

= 1−
(

1
q− 1

)(
q− 1

q

)n
.

(39)

The non-zero values of the submatrices in A and B are to be generated independently
from a uniform random distribution, so we can easily express the probability, e.g., a ran-
domly generated matrixM32 over GF(16) is regular with probability 99.15% and matrix
M64 over GF(256) with probability 99.69%.

Using the regularity probability, we can express the cardinality ofMn. This can be
performed by multiplying the number of all possible matrices by the probability of each
matrix over Fq being regular:

|Mn| = qn − (q− 1)n−1. (40)

4.1. Justification of the Selected Generators

In this subsection, we justify the proposed form of our efficient equivalent key genera-
tors with respect to the desires mentioned in Section 4.

Electronics 2022, 11, 3607 12 of 21

We propose the form of generators in Equation (34), i.e., the ones on the diagonal
and the only non-trivial elements adjacent to it, so that vector–matrix (and analogically,
matrix–matrix) multiplication can be efficiently performed as described by formula:

M ∈ Mn : M

g1
g2
...

gn

 = (I + M̃)

g1
g2
...

gn

 =

g1
g2
...

gn

+

m1g2
m2g3

...
mng1

. (41)

Based on Equation (41), the vector–matrix multiplication M · g can be performed
simply by copying the vector g to the result variable, then cyclically shifting the vector g
and adding an elementwise product of the vector g and the vector of non-trivial values of
the matrix M (as listed in Equation (38)).

Next, we discuss a number of different equivalent keys for our efficient generators.
This is equal to the number of possible distinct linear maps of generators, in other words,
the number of different matrices that can be obtained by multiplying matrices inMn by
each other. We believe that these matrices generate the whole group GLn for n > 2, but we
were not able to prove this claim in general (we managed to prove the claim for matrices
3× 3, 4× 4, 5× 5 over Z2, then for 3× 3, 4× 4 over Z3, and also, for matrices 3× 3 over Z5
by brute force). Assuming that the following formula holds over a fixed Fq and for every
integer n > 2:

∀M ∈ GLn, ∃k ∈ N, ∃M1, . . . , Mk ∈ Mn :
k

∏
i=1

Mi = M

=⇒ card({matrices generated fromMn}) = ord(GLn),

(42)

the number of equivalent keys using the proposed efficient generators, with the possibility
of generating an equivalent key from another equivalent key, would be

N = qv2
1+2o2

1+2o2
2(q−v1 ; q)v1(q

−o1 ; q)2
o1
(q−o2 ; q)2

o2
. (43)

For parameters Ia and Vc, respectively, the number of transitively reachable equiv-
alent keys (i.e., generating the equivalent key from another equivalent key) would be
approximately 165392 · 0.7092 ≈ 221567 and 25620000 · 0.9805 ≈ 2160000, respectively.

The number of possible distinct equivalent keys after one generating process is |Mv1 | ·
|Mo1 |2 · |Mo2 |2; for parameters Ia and Vc, respectively, the number of possible equivalent
keys after one generation is approximately 2656 and 22368, respectively. Assuming the
equivalent key generators are sampled from a uniform distribution, the entropy of the
next-generated equivalent key is approximately 656 Sh and 2368 Sh, respectively. Given this
entropy, we believe that the probability of the signer using the same equivalent key multiple
times is negligible. The number of distinct equivalent keys is summarized in Table 1.

Table 1. Summary of equivalent key variants.

Generator
Log2 of Number of Equivalent Keys

Single Generated Key Transitively Reachable
Ia Vc Ia Vc

General 38,976 273,664 38,976 273,664
Efficient 656 2368 21,567 160,000

We further discuss the number of distinct linear maps generated in equivalent keys, as
these are typical targets in a side-channel attack scenario [20,21]. The number of distinct

Electronics 2022, 11, 3607 13 of 21

maps S generated by the proposed efficient generator A over a single class of equivalent
keys is

qo2
1+o2

2(q−o1 ; q)o1(q
−o2 ; q)o2 . (44)

For parameters Ia and Vc, respectively, the number of transitively reachable linear
maps S is approximately 162048 · 0.8716 ≈ 28192 and 2565392 · 0.9922 ≈ 243136, respectively.
After one generating process, the number of different linear maps S is |Mo1 | · |Mo2 |, that is
almost 2256 for the Ia parameters and almost 2800 for the Vc parameters.

Lastly, we discuss the required fresh randomness. The generators A and B defined in
Equations (20) and (26) use a quadratic number of random elements in regard to parameters
m and n. For Rainbow parameters Ia and Vc, respectively, this corresponds to ≈39 kb and
≈274 kb of fresh randomness, respectively. The number of required random elements is
linear for our efficient generators defined in Equation (36), leaving us with only 656 bits
and 2368 bits of fresh randomness, respectively. This amount of randomness refers to the
case when the matrices A and B are successfully generated according to the requirements,
i.e., the generated matrices are regular (the probability of the randomly generated matrices
A and B being regular is 96 % for the Ia parameters and 98.4 % for the Vc parameters).

4.2. Efficient Computation of Equivalent Keys

Compositions A · S−1 and T−1 · B can be computed in the same way as the multiplica-
tion in Equation (41).

The composition of A ◦ F, where A is represented as A in Equation (36), is:

∀k ∈ {1, . . . , o1} : [A ◦ F]k ↔ F(v1+k) + akF(v1+|k+1|o1), (45)

∀k ∈ {o1 + 1, . . . , m} : [A ◦ F]k ↔ F(v1+k) + akF(v1+|k−o1+1|o2+o1). (46)

The composition of F ◦ B, where B is represented as B in Equation (36), is

k ∈ {v1, . . . , n} : [F ◦ B]k ↔ (BᵀF(k)B) =

(
(B(1))ᵀF(k)

1,1 B(1)
)

(B(1))ᵀF(k)
1,2 B(2) (B(1))ᵀF(k)

1,3 B(3)

0
(
(B(2))ᵀF(k)

2,2 B(2)
)

(B(2))ᵀF(k)
2,3 B(3)

0 0 0

. (47)

Upper triangular matrices
(
(B(1))ᵀF(k)

1,1 B(1)
)

and
(
(B(2))ᵀF(k)

2,2 B(2)
)

in Equation (47)
can be efficiently evaluated as described in Section 4.2.1. The remaining parts of Equa-
tion (47) consist of matrix multiplications (B(u))ᵀF(k)

u,vB(v), where (u, v) ∈ {(1, 2), (1, 3), (2, 3)}.
This expression can be computed as:

[(B(u))ᵀF(k)
u,vB(v)]r,c = [F(k)

u,v]r,c + b(u)|r−1|s [F
(k)
u,v]|r−1|s ,c + b(v)|c−1|w [F

(k)
u,v]r,|c−1|w + b(u)|r−1|s b(v)|c−1|w [F

(k)
u,v]|r−1|s ,|c−1|w , (48)

where B(u) ∈ Ms, B(v) ∈ Mw, and F(k)
u,v ∈ Fs×w is an arbitrary matrix. If the elements

are stored sequentially by index k, the computation can be accelerated using word-level
parallelism and vector processing.

4.2.1. Algorithm for Upper Triangular Matrices’ Evaluation

Algorithm 1 was deduced as described in the following text. First, we rewrote output(
(B(u))ᵀF(k)

u,uB(u)
)

, without writing free variables u and k, as (BᵀFB), where F is an upper

triangular matrix in Fs×s and B is a matrix from the setMs ⊂ Fs×s, which is defined using
the vector of its non-trivial values (b1, . . . , bs). Then,

[(BᵀFB)]r,c =

[BᵀFB]r,r r = c,
[BᵀFB]r,c + [BᵀFB]c,r r < c,
0 r > c.

(49)

Electronics 2022, 11, 3607 14 of 21

By expanding matrix multiplication, we obtain

[BᵀFB]r,c = Fr,c + b|r−1|s F|r−1|s ,c + b|c−1|s Fr,|c−1|s + b|r−1|s b|c−1|s F|r−1|s ,|c−1|s . (50)

Specifically, for r = c, we obtain

[BᵀFB]r,r = Fr,r + b|r−1|s(F|r−1|s ,r + Fr,|r−1|s) + b2
|r−1|s F|r−1|s ,|r−1|s . (51)

One term of (F|r−1|s ,r + Fr,|r−1|s) is zero, as matrix F is upper triangular and |r− 1|s 6= r.

Algorithm 1 Computation of [
(
(B(u))ᵀF(k)

u,uB(u)
)
]r,c.

input: matrix B(u) ∈ Ms as vector (b1, . . . , bs), u ∈ {1, 2}
upper triangular matrix F(k)

u,u ∈ Fs×s, k ∈ O1 ∪O2
integers r, c ∈ {1, . . . , s}, where r ≤ c

output: element [
(
(B(u))ᵀF(k)

u,uB(u)
)
]r,c

1: Fi,j := [F(k)
u,u]i,j, ∀i, j ∈ {1, . . . , s} (for brevity)

2: m := c− r
3: r1 := |r− 1|s
4: c1 := |c− 1|s
5: t := Fr,c + br1 bc1(r 6= 1 ? Fr1,c1 : Fc1,r1)
6: if m 6= s− 1 then
7: t := t + br1(r 6= 1 ? Fr1,c : Fc,s)
8: else if char(F) 6= 2 then
9: t := t + 2bsFs,s

10: end if
11: if m > 1 then
12: t := t + bc1 Fr,c1
13: else if m = 1∧ char(F) 6= 2 then
14: t := t + 2brFr,r
15: end if
16: return t

The second part of Equation (49) with the condition r < c is

[BᵀFB]r,c + [BᵀFB]c,r = Fr,c + b|r−1|s(F|r−1|s ,c + Fc,|r−1|s)+

+ b|c−1|s(Fr,|c−1|s + F|c−1|s ,r) + b|r−1|s b|c−1|s(F|r−1|s ,|c−1|s + F|c−1|s ,|r−1|s). (52)

In all sets of parentheses, there is at least one term equal to zero (note that F is an
upper triangular matrix), except for two cases. The exception is iff the indices are the same.
The first case is when |r− 1|s = c =⇒ c = r + s− 1. This condition can occur only when
r = 1∧ c = s:

[BᵀFB]1,s + [BᵀFB]s,1 = F1,s + 2bsFs,s + bs−1(F1,s−1 + Fs−1,1) + bsbs−1(Fs,s−1 + Fs−1,s) =

= F1,s + 2bsFs,s + bs−1F1,s−1 + bsbs−1Fs−1,s.
(53)

The second case is when r = |c− 1|s =⇒ c = r + 1:

[BᵀFB]r,r+1 + [BᵀFB]r+1,r = Fr,r+1 + b|r−1|s(F|r−1|s ,r+1 + Fr+1,|r−1|s) + 2brFr,r + b|r−1|s br(F|r−1|s ,r + Fr,|r−1|s). (54)

In the last parenthesis in Equation (52), there is no possibility of the same indices, i.e.
|r − 1|s = |c − 1|s, because r < c. In the case of char(F) = 2, we were able to skip the
computation of 2bsFs,s and 2brFr,r.

Electronics 2022, 11, 3607 15 of 21

The result can be summarized as:

[(BᵀFB)]r,c =

Equation (51) r = c,
Equation (54) r = c− 1,
Equation (53) r = 1∧ c = s,
0 r > c,
Equation (52) otherwise.

(55)

Equation (55) for the condition r ≤ c can be rewritten as Algorithm 1.

5. Performance Evaluation

In this section, we present a side-channel leakage evaluation of the presented side-
channel countermeasure and a time and memory performance evaluation. We focus on the
efficient equivalent keys scheme proposed in Section 4 only. We compare unprotected and
protected implementations regarding side-channel leakage in Section 5.1, regarding time in
Section 5.2, and regarding memory in Section 5.3.

5.1. Side-Channel Leakage Evaluation

We describe our key-vs.-key t-test methodology in Section 5.1.1, and then, we present
our results in Section 5.1.2. We used an attack-independent test vector leakage assessment
methodology [35]. We were not able to detect any statistically significant leakage from the
protected implementation.

5.1.1. Methodology

We implemented Rainbow with the proposed equivalent key scheme (using the un-
protected reference implementation) on a 32-bit STM32F303 microcontroller based on the
ARM Cortex-M4 core. To allow for a thorough and feasible side-channel evaluation of the
proposed countermeasure, we chose Rainbow parameters Fq = GF(16), v1 = o1 = o2 = 8
to shorten the signing algorithm runtime compared to the Ia or Vc variants. We used the
proposed efficient implementation of the equivalent keys scheme. The microcontroller was
mounted in a ChipWhisperer C308 stand-alone evaluation board powered by an external
5 V laboratory power supply and clocked by a 7.37 MHz crystal.

The embedded Rainbow implementation receives a random seed from a controlling
PC, which is then expanded using a linear congruential generator. The microcontroller
then performs multiple signings without any external communication. Based on the
generated pseudorandom numbers, the implementation generates the digests to be signed
and also chooses one of four predefined private keys. This way, the microcontroller signs
multiple randomly generated digests, each one using one of four randomly chosen private
keys. The randomly interleaved private keys are a necessary prerequisite for our leakage
evaluation methodology, as described later. When the signings are done, the microcontroller
sends a checksum of the signatures back to the controlling PC, and the whole process is
repeated as many times as necessary. This approach allows for a significant speedup of the
measurement process.

Voltage drops over the core were amplified using the Langer EMV-Technik PA303
preamplifier and sampled using the Picoscope 6404D oscilloscope. A 10Ω shunt resistor
was used. The oscilloscope had a 25 MHz bandwidth limiter enabled, and the measurement
channel was set in DC 50 Ω mode (since the preamplifier acts like a DC blocker). The
sampling rate was 312 MS/s, in our case resulting in over 4 million samples per trace. The
measured traces were then decimated 1:10 to 31.2 MS/s to allow for a feasible evaluation
while maintaining a good signal-to-noise ratio [36].

The voltage was sampled during each signing, which lasted approximately 13.8 ms.
Each decimated power trace consisted of 430,560 samples. The unprotected and protected
implementations were evaluated independently. For the unprotected implementation, one
of the four original private keys was randomly chosen in every signing. For the protected

Electronics 2022, 11, 3607 16 of 21

implementation, an equivalent key of one of the four original private keys was randomly
chosen, and the next equivalent key was generated from the previous one.

The side-channel leakage was then evaluated using a fixed-fixed t-test methodol-
ogy [35]. The measured power traces were partitioned into four groups based on the
original private key used during the signing. Welch’s t-statistic was then computed be-
tween every two groups (six evaluations in total), in every sampling point independently.
The null hypothesis was that the two groups’ means are equal, i.e., the original keys are
indistinguishable by the mean power consumption. The hypothesis was rejected for high
values of the |t|-statistic according to the Student’s distribution and selected significance
level. In side-channel leakage evaluation, the threshold of 4.5 or 5 is typically considered
for the |t|-statistic, which must be further evaluated carefully with the possibility of both
positive and negative false results in mind [35,37].

5.1.2. Results

Figure 1 depicts the results of the leakage evaluations. Figure 1a depicts the results
of the evaluation on the unprotected implementation, where every t-test was performed
using approximately 40,000 power traces. Figure 1b depicts the results for the protected
implementation, where every t-test was performed using approximately one million power
traces. Each graph contains six overlaid curves, one for each key-vs.-key t-test. As can be
seen in Figure 1a, many peaks reach t-value of 200 and some even exceed 300, in contrast
to Figure 1b, where the threshold of 4.5 (marked by red horizontal lines) is not surpassed
by the protected implementation. Therefore, we did not detect any statistically significant
side-channel leakage from our protected implementation during the signing.

(a) Unprotected.

(b) Protected.

Figure 1. Results of the t-tests. Each graph contains six overlaid curves. The t-value is depicted on
the vertical axis, and time is on the horizontal axis.

Electronics 2022, 11, 3607 17 of 21

5.2. Time Evaluation

We evaluated the time performance on three different platforms:

• The STM32F303 ARM microcontroller (a single-core Cortex-M4);
• A Raspberry Pi 3 B+ single-board computer equipped with the Broadcom BCM2837

ARM microprocessor (a four-core Cortex-A53);
• A desktop computer equipped with an Intel Core i5-2400 processor (four cores).

On the STM32F303 microcontroller, we used the same parameters as for the leakage
assessment, i.e., v1 = o1 = o2 = 8, where the secret key size is 1776 bytes. On the
Raspberry Pi and desktop computer, we used the parameters v1 = o1 = o2 = 32, where the
secret key size is 95,520 bytes. The Rainbow algorithm runtime was measured including
random number generating using a linear congruent generator, excluding hashing. All the
implementations were compiled with GCC without any optimizations enabled.

On the STM32F303 microcontroller, the time to sign a document was 13.8 ms, and the
average time to generate the equivalent key was 33.28 ms. The whole signing including the
equivalent key generation was 3.41-times slower compared to the unsecured signing.

On the Raspberry Pi 3 single-board computer, the average time to sign a document
was 7.72 ms, and the average time to generate the equivalent key was 19.87 ms. The whole
signing including the equivalent key generation was 3.57-times slower compared to the
unsecured signing.

On the desktop computer, the average time to sign a document was 116 µs, and the
average time to generate the equivalent key was 420 µs. The whole signing including the
equivalent key generation was 4.62-times slower compared to the unsecured signing.

For comparison, the randomization countermeasure of Rainbow proposed in [29]
resulted in 3.31-times slower signing. Table 2 summarizes the time overhead comparison.
However, our equivalent key can be precomputed any time prior to the signing, and then,
the signing itself has no overhead.

Table 2. Time overhead comparison.

Implementation Unprotected Protected Slowdown

Our countermeasure
(STM32F303) 13.8 ms 13.8 + 33.28 =

47.08 ms 1 3.41×

Our countermeasure
(RPi) 7.72 ms 7.72 + 19.87 =

27.59 ms 1 3.57×

Our countermeasure
(PC) 116 µs 116 + 420 = 536 µs 1 4.62×

Countermeasure
from [29] 162, 821 cycles 539, 338 cycles 3.31×

1 Our equivalent key can be precomputed any time prior to the signing, and then, the signing itself has no
overhead.

Figure 2 shows the calculation time of the individual generation components. Det is
the time of the (A, B) tuple generation including the regularity verification. T−1 ◦ B, A ◦ S−1

and A ◦ F correspond to the calculation of T−1B, AS−1, and A ◦ F, respectively. The time
of F◦B diag refers to Algorithm 1, and F◦B norm refers to Equation (48). The time of the
signing itself is also included for comparison.

Electronics 2022, 11, 3607 18 of 21

(a) STM32F303 ARM microcontroller, v1 = o1 = o2 = 8.

(b) Raspberry Pi 3 single-board computer, v1 = o1 = o2 = 32.

0

50

100

150

200

250

300

Signing Det T⁻¹∘B F∘B diag F∘B norm A∘S⁻¹ A∘F

T
im

e
[μ

s]

(c) Desktop computer, v1 = o1 = o2 = 32.

Figure 2. Execution times of the components in equivalent key generation.

5.3. Memory Evaluation

From the memory perspective, the generating of the equivalent key is not an in-place
algorithm due to the matrix multiplication in Equation (47). As the key structure is the
same as for the unprotected version, we further describe only the extra variables needed
for the generation of the equivalent key. The generating of the equivalent key does not
need a dynamically allocated memory (as we assumed predefined parameters), and the
biggest heap variable is the (A, B) two-tuple itself, which only takes (n + m) · log2(q) bits,
where log2(q) is the size of an element of Fq in bits. Other local variables are negligible.
Additionally, one can split each part of the mask to be applied separately. This can further
reduce extra memory needs to max(n, m) · log2(q) bits.

The implementation submitted to NIST uses a special case of the secret key, where
matrices S and T are specifically selected for memory effectiveness. After the generating of
the equivalent key, this special format is no longer possible. As a consequence, we obtained
a slightly larger secret key, where the size difference was (v2

1 + 2o2
1 + 2o2

2) · log2(q) bits. For
the Ia parameters, the difference was 2560 bytes, resulting in a key that was approximately

Electronics 2022, 11, 3607 19 of 21

2.6% larger. Our countermeasure also requires a minor modification of the submitted
implementation.

Fresh random bits are needed during the generation and even during the signing
process. The amount of randomness is deterministic, except the case where singular
matrices are generated and need to be generated again. For the equivalent key generation,
the mode (most common value) of the required bits of randomness is (n + m) · log2(q), and
for the signing process, it is v1 · log2(q) (excluding the hashing salt). The mode is also a
minimum number of required bits.

6. Conclusions

In this paper, we proposed a side-channel countermeasure for multivariate quadratic
signature schemes. We used the Rainbow signature scheme as our use case. However,
the proposed countermeasure is applicable to other schemes such as unbalanced oil and
vinegar as well (UOV is equivalent to a single-layer Rainbow). We described the Rainbow
algorithm and the notation used.

We proposed an equivalent private key scheme, in which a precomputed randomly
generated equivalent key is used for signing instead of the original fixed private key. We
examined the scheme in general and described its restrictions and security properties from
the theoretical point of view. These include the number of different equivalent keys or
reached entropy. We showed that the number of equivalent keys is enormous, and given
that, we believe the probability of using the same equivalent key twice is negligible in
practice. This efficiently prevents the attacker from mounting attacks such as differential or
correlation power analysis.

We further proposed an efficient equivalent key scheme. Our scheme requires sig-
nificantly less fresh randomness (bounded by the O(n)) than the general equivalent key
(bounded by the O(n2)) and allows for faster and more efficient computation. We described
its properties, similar to the general case. We described an efficient algorithm for the
generation of the equivalent key.

We evaluated our proposed countermeasure using attack-independent side-channel
leakage assessment with one million power traces, and we were not able to detect any
statistically significant information leakage. Lastly, we described the time and memory
requirements of the countermeasure. The overhead of our countermeasure is comparable
to other relevant countermeasures. Moreover, our equivalent key can be precomputed any
time prior to the signing, and then, there is no overhead at the time of signing.

Author Contributions: Conceptualization, D.P. and P.S.; methodology, D.P. and P.S.; software, D.P.;
validation, P.S. and D.P.; resources, P.S. and M.N.; data curation, D.P. and P.S.; writing—original draft
preparation, D.P. and P.S.; writing—review and editing, P.S. and M.N.; visualization, P.S.; supervision,
P.S. and M.N.; project administration, P.S. and M.N.; funding acquisition, M.N. and P.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of the Interior of the Czech Republic Grant
Number VJ02010010, “Tools for AI-enhanced Security Verification of Cryptographic Devices” in the
program Impakt1 (2022–2025).

Data Availability Statement: The data can be provided upon reasonable request to the corresponding
author. The side-channel measurements and evaluations were done by the SICAK toolkit, available
online: https://github.com/petrsocha/sicak (accessed on 27 September 2022).

Acknowledgments: The authors thank David Kokoška, Jan Onderka, and Vojtěch Miškovský for
valuable discussions and proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of threats? A survey of practical security

vulnerabilities in real IoT devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
2. Daemen, J.; Rijmen, V. The Design of Rijndael; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2.

https://github.com/petrsocha/sicak
http://doi.org/10.1109/JIOT.2019.2935189

Electronics 2022, 11, 3607 20 of 21

3. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

4. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
5. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
6. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: Algorithm Specifications

and Supporting Documentation. Available online: https://pq-crystals.org/ (accessed on 27 September 2022).
7. Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:

Fast-Fourier Lattice-Based Compact Signatures over NTRU. NIST PQC Project Round 2, Documentation. Available online:
https://falcon-sign.info/ (accessed on 27 September 2022).

8. Ding, J.; Schmidt, D. Rainbow, a new multivariable polynomial signature scheme. In Proceedings of the International Conference
on Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005; Springer: Berlin/Heidelberg, Germany,
2005; pp. 164–175.

9. Kipnis, A.; Patarin, J.; Goubin, L. Unbalanced oil and vinegar signature schemes. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 206–222.

10. Beullens, W.; Preneel, B. Field lifting for smaller UOV public keys. In Proceedings of the International Conference on Cryptology
in India, Chennai, India, 10–13 December 2017; Springer: Cham, Switzerland, 2017; pp. 227–246.

11. Kocher, P.; Jaffe, J.; Jun, B. Differential Power Analysis. In Advances in Cryptology — CRYPTO’ 99; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 388–397. [CrossRef]

12. Boer, B.d.; Lemke, K.; Wicke, G. A DPA attack against the modular reduction within a CRT implementation of RSA. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Redwood Shores, CA, USA, 13–15 August
2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 228–243.

13. Brier, E.; Clavier, C.; Olivier, F. Correlation Power Analysis with a Leakage Model. In Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 16–29. [CrossRef]

14. Quisquater, J.J.; Samyde, D. Electromagnetic analysis (ema): Measures and counter-measures for smart cards. In Proceedings of
the International Conference on Research in Smart Cards, Cannes, France, 19–21 September 2001; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 200–210.

15. Chari, S.; Rao, J.R.; Rohatgi, P. Template attacks. In Proceedings of the International Workshop on Cryptographic Hardware and
Embedded Systems, Redwood Shores, CA, USA, 13–15 August 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 13–28.

16. Rechberger, C.; Oswald, E. Practical template attacks. In Proceedings of the International Workshop on Information Security
Applications, Jeju Island, Korea, 23–25 August 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 440–456.

17. Lerman, L.; Poussier, R.; Markowitch, O.; Standaert, F.X. Template attacks versus machine learning revisited and the curse of
dimensionality in side-channel analysis: Extended version. J. Cryptogr. Eng. 2018, 8, 301–313. [CrossRef]

18. Hettwer, B.; Gehrer, S.; Güneysu, T. Applications of machine learning techniques in side-channel attacks: A survey. J. Cryptogr.
Eng. 2020, 10, 135–162. [CrossRef]

19. Timon, B. Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2019, 2019, 107–131. [CrossRef]

20. Park, A.; Shim, K.A.; Koo, N.; Han, D.G. Side-Channel Attacks on Post-Quantum Signature Schemes based on Multivariate
Quadratic Equations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 500–523. [CrossRef]

21. Pokorný, D.; Socha, P.; Novotný, M. Side-channel attack on Rainbow post-quantum signature. In Proceedings of the 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 565–568. [CrossRef]

22. Tiri, K.; Verbauwhede, I. A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In
Proceedings of the Proceedings Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February
2004; Volume 1, pp. 246–251.

23. Popp, T.; Mangard, S. Masked dual-rail pre-charge logic: DPA-resistance without routing constraints. In Proceedings of the
International Workshop on Cryptographic Hardware and Embedded Systems, Edinburgh, UK, 29 August–1 September 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 172–186.

24. Lu, Y.; O’Neill, M.; McCanny, J. Evaluation of random delay insertion against DPA on FPGAs. ACM Trans. Reconfigurable Technol.
Syst. (TRETS) 2010, 4, 1–20. [CrossRef]

25. Baddam, K.; Zwolinski, M. Evaluation of dynamic voltage and frequency scaling as a differential power analysis countermeasure.
In Proceedings of the 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded
Systems (VLSID’07), Bangalore, India, 6–10 January 2007; pp. 854–862.

26. Nikova, S.; Rechberger, C.; Rijmen, V. Threshold implementations against side-channel attacks and glitches. In Proceedings of
the International Conference on Information and Communications Security, Raleigh, NC, USA, 4–7 December 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 529–545.

27. Bilgin, B.; Gierlichs, B.; Nikova, S.; Nikov, V.; Rijmen, V. Higher-order threshold implementations. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, 7–11
December 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 326–343.

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://dx.doi.org/10.1137/S0036144598347011
https://pq-crystals.org/
https://falcon-sign.info/
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/s13389-017-0162-9
http://dx.doi.org/10.1007/s13389-019-00212-8
http://dx.doi.org/10.46586/tches.v2019.i2.107-131
http://dx.doi.org/10.46586/tches.v2018.i3.500-523
http://dx.doi.org/10.23919/DATE51398.2021.9474157
http://dx.doi.org/10.1145/1857927.1857938

Electronics 2022, 11, 3607 21 of 21

28. Gross, H.; Mangard, S.; Korak, T. Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary
Protection Order. In Proceedings of the 2016 ACM Workshop on Theory of Implementation Security, Vienna, Austria, 24 October
2016; p. 3.

29. Shim, K.A.; Park, C.M.; Baek, Y.J. Lite-Rainbow: Lightweight Signature Schemes Based on Multivariate Quadratic Equations
and Their Secure Implementations. In Proceedings of the Progress in Cryptology–INDOCRYPT 2015; Biryukov, A., Goyal, V., Eds.;
Springer International Publishing: Cham, Switzerland, 2015; pp. 45–63.

30. Beullens, W. Breaking Rainbow Takes a Weekend on a Laptop. Cryptology ePrint Archive, Report 2022/214, 2022. Available
online: https://ia.cr/2022/214 (accessed on 27 September 2022).

31. Wolf, C.; Preneel, B. Equivalent keys in Multivariate Quadratic public key systems. J. Math. Cryptol. 2011, 4, 375–415. [CrossRef]
32. PQCRainbow.org. Available online: https://www.pqcrainbow.org/ (accessed on 27 September 2022).
33. Andrews, G.E.; Berndt, B. Ramanujan’s Lost Notebook; Springer: New York, NY, USA, 2005. [CrossRef]
34. Suprunenko, D.; Hirsch, K.; Society, A.M. Matrix Groups; Translations of Mathematical Monographs; American Mathematical

Society: Providence, RI, USA: 1976.
35. Schneider, T.; Moradi, A. Leakage assessment methodology. J. Cryptogr. Eng. 2016, 6, 85–99. [CrossRef]
36. O’Flynn, C.; Chen, Z. Synchronous sampling and clock recovery of internal oscillators for side-channel analysis and fault injection.

J. Cryptogr. Eng. 2015, 5, 53–69. [CrossRef]
37. Standaert, F.X. How (not) to use welch’s t-test in side-channel security evaluations. In Proceedings of the International Conference

on Smart Card Research and Advanced Applications, Montpellier, France, 12–14 November 2018; Springer: Cham, Switzerland,
2018; pp. 65–79.

https://ia.cr/2022/214
http://dx.doi.org/10.1515/jmc.2011.004
https://www.pqcrainbow.org/
http://dx.doi.org/10.1007/0-387-28124-x
http://dx.doi.org/10.1007/s13389-016-0120-y
http://dx.doi.org/10.1007/s13389-014-0087-5

	Introduction
	Rainbow
	Central Map in Matrix Representation
	Signing and Verification Process

	Equivalent Key
	Composition A after F
	Composition F after B
	Analysis of an Equivalent Key

	Efficient Implementation
	Justification of the Selected Generators
	Efficient Computation of Equivalent Keys
	Algorithm for Upper Triangular Matrices' Evaluation

	Performance Evaluation
	Side-Channel Leakage Evaluation
	Methodology
	Results

	Time Evaluation
	Memory Evaluation

	Conclusions
	References

