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Abstract—Side-channel attacks pose a severe threat to crypto-
graphic implementations, allowing the attacker to recover secret
information based on physical observations of the cryptographic
device. Correlation Power Analysis is considered to be one of the
most powerful attacks in the non-profiled scenario. In this paper,
we consider the distance/Brownian correlation instead of the
traditionally used Pearson coefficient. We give a fair comparison
of our novel approach attacking AES on three different FPGA
platforms and we discuss the distance correlation potential in the
context of side-channel analysis.

Index Terms—Side-Channel Analysis, Embedded Security, In-
ternet of Things, Correlation Power Analysis, Non-linear Corre-
lation

I. INTRODUCTION

In today’s IoT and Industry 4.0 era, embedded systems
are becoming a natural part of our living environment. To
ensure security and privacy, various authentication, authoriza-
tion, and encryption schemes and the underlying cryptographic
primitives must be implemented. While these are considered
secure under the cryptanalyst’s black-box model, they may
be vulnerable to physical attacks such as side-channel power
analysis when implemented improperly [1], [2].

These attacks exploit the fact that the instantaneous power
consumption of the cryptographic device is data-dependent. In
the non-profiled side-channel attack scenario, the first phase of
the attack is typically sampling the power consumption during
multiple encryptions, while capturing the input or output data.
In the second phase, the attacker forms consumption hypotheses
based on the captured data, for every key value (attacking
a part of the key at a time, e.g., in the case of AES, a byte),
and statistically selects – distinguishes – the most probable
hypothesis based on the real sampled consumption.

Different side-channel distinguishers were proposed over
time. The original Differential Power Analysis [1] proposes
partitioning the power traces according to a single bit in
a predicted key-dependent working variable, for every key
hypothesis. Assuming the correct hypothesis, the two partitions
should be distinguishable, which is done by searching for
the greatest point-wise difference of means. Correlation Power
Analysis [3], [2] is a similar attack based on searching for
a significant point-wise Pearson correlation of the real power
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consumption and the predicted consumption, using, e.g., Ham-
ming weight/distance power leakage model. Mutual Informa-
tion Analysis [4], [5] is a more generic approach working with
only a few leakage assumptions, based on approximating the
mutual information between the hypothetical and the real power
consumption. Kolmogorov-Smirnov Analysis [5], [6] is another
example of a generic side-channel distinguisher. In order to
reduce the leakage assumptions in correlation-based attacks,
rank correlation, namely Spearman correlation, is evaluated
in [7]. Recently, a non-profiled side-channel distinguisher based
on deep learning was proposed [8]. The usage of the non-
parametric distance-based statistics, such as distance/Brownian
correlation [9], [10], in the side-channel analysis context, was
suggested as an alternative in [11], and it was recently used for
attacking a digital multiplier [12].

In this paper, we first briefly describe the Correlation Power
Analysis attack. Next, we present the non-parametric multi-
variate distance correlation coefficient, and we propose a mul-
tivariate clock-wise side-channel distinguisher. We evaluate the
distinguisher by attacking AES [13] encryption implementa-
tions on three different FPGA platforms, using success rate
and guessing entropy metrics [14].

II. DISTANCE CORRELATION POWER ANALYSIS

In this section, we first describe the Correlation Power Anal-
ysis attack using the Pearson correlation coefficient. Then we
describe the distance correlation. Finally, we propose a novel
multivariate clock cycle-wise side-channel distinguisher.

A. Correlation Power Analysis

In this subsection, we describe the Correlation Power Anal-
ysis [2] attack. First, let us define the hat symbol N̂ for any
variable N ∈ N as N̂ = {1, 2, ..., N} for simplicity.

In the first phase of the attack, N power traces are measured,
e.g., using an oscilloscope, during N encryptions of uniform
random plaintexts. Each power trace consists of power con-
sumption sampled in S points in time. The N power consump-
tion samples at a given time s can be considered N samples
from a random variable Ps(n) ∈ R, where s ∈ Ŝ, n ∈ N̂ .

In the second phase, the attacker predicts power consumption
for each of the N encryptions, and for each of the K key
hypotheses (for AES key byte, K = 256). The N hypothetical
power predictions for a given hypothetical key k can be
considered N samples from a random variable Hk(n) ∈ R,



where k ∈ K̂, n ∈ N̂ . The random sample (Ps(n), Hk(n))
represent paired data, for s ∈ Ŝ, k ∈ K̂, n ∈ N̂ .

Finally, the Pearson correlation coefficient is computed for
every s ∈ Ŝ, k ∈ K̂:

ρPs,Hk
=

Cov(Ps, Hk)√
Var(Ps)Var(Hk)

, (1)

and the key is selected, e.g., as

argmax
k

|ρPs,Hk
|. (2)

Note that the Pearson correlation coefficient may provide
suboptimal results when the correlated variables are not normal
or their relationship is not linear [7].

B. Distance Correlation

Distance correlation, equal to Brownian correlation, is a mul-
tivariate generalization and extension of the Pearson product-
moment correlation coefficient [9], [10]. The distance correla-
tion between X ∈ Rp and Y ∈ Rq is the number R(X,Y )
defined as

R2(X,Y ) =

{
V2(X,Y )

V2(X)V2(Y ) , if V2(X)V2(Y ) > 0;

0, if V2(X)V2(Y ) = 0;
(3)

where V(X,Y ) is distance covariance, and V(X) is distance
variance. To define these, let us first define a distance matrix.

For random sample (X(n), Y (n)), n ∈ N̂ , of N i.i.d.
random vectors from joint distribution, we compute the Eu-
clidean distance matrices (akl) = |X(k)−X(l)|p and (bkl) =
|Y (k)− Y (l)|q , where k, l ∈ N̂ . Furthermore, we compute the
double centered Euclidean distance matrices as

(Akl) = akl − ak· − a·l + a··, (4)

where k, l ∈ N̂ , and

ak· =
1

N

∑
l∈N̂

akl, a·l =
1

N

∑
k∈N̂

akl, a·· =
1

N2

∑
k,l∈N̂

akl.

(5)
Define (Bkl) similarly for k, l ∈ N̂ . The sample distance
covariance V(X,Y ) is then defined as

V2(X,Y ) =
1

N2

∑
k,l∈N̂

AklBkl, (6)

and sample distance variance as V2(X) = V2(X,X).
Note that the distance correlation is applicable to random

variables of arbitrary and unequal dimensions. Also, unlike the
Pearson correlation coefficient, the distance correlation is equal
to zero if and only if the variables are independent.

C. Clock Cycle-wise Correlation Power Analysis

While the distance correlation can be used in the same
univariate fashion as the Pearson correlation coefficient, it
allows for further extensions. Suppose we have power traces
containing S samples, measured during C clock cycles. Instead
of considering the power traces to be S random variables
Ps(t) ∈ R, we may consider them to be C random variables
Qc(t) ∈ RS/C . Using distance correlation, these can be

correlated to hypotheses Hk(t) for every c ∈ Ĉ, k ∈ K̂, and
the key can be selected once again as

argmax
k

R(Qc, Hk). (7)

Note that while this is a multivariate side-channel distin-
guisher, it uses sample points within a single clock cycle.
Therefore, it exploits univariate side-channel leakage resulting
in a univariate attack, unlike more complex bivariate/multivari-
ate attacks on protected implementations.

III. EXPERIMENTAL EVALUATION

A. Methodology

We evaluate and compare three correlation-based side-
channel distinguishers:

• Pearson correlation, point-wise,
• distance correlation, point-wise,
• distance correlation, clock cycle-wise,

attacking AES-128 encryption on three FPGA platforms:
• Evariste-III [15] system, with Altera Cyclone III (65 nm),
• Sakura-G [16] board, with Xilinx Spartan 6 (45 nm),
• DPABoard [17] board, with Xilinx Artix 7 (28 nm).

The voltage drop over the FPGA core is sampled using Pico-
scope 6404D oscilloscope. We aim our attack at the last round
working register Hamming distance leakage. The point-wise
correlation is computed for all sample points, capturing entire
encryption, with no prior points-of-the-interest analysis. The
clock cycle-wise correlation is computed for all the 11 clock
cycles.

The distinguishers are compared using success rate and
guessing entropy metrics [14]. Assume all the K possible key
candidates sorted according to the respective distinguisher, with
the most probable key candidate on the first position; and define
pos ∈ K̂ as a position of the correct key candidate. Success rate
is then defined as Succ = Pr(pos = 1), i.e., the probability of
the correct key being successfully revealed. Guessing entropy
is defined as GE = E(pos), i.e., the expected position of the
correct key guess.

The presented results, for each platform, are based on 50 in-
dependent data sets and averaged over all 16 bytes of the AES
key.

B. Results

Figure 1 shows results for Evariste III + Altera Cyclone III
FPGA, Figure 2 shows results for Sakura-G, i.e., Xilinx Spar-
tan 6 FPGA, and Figure 3 shows results for DPABoard, i.e.,
Xilinx Artix 7 FPGA. While point-wise distance correlation
performs the same or slightly worse than Pearson correlation,
the cycle-wise analysis shows better results on all three plat-
forms, most notably on Altera Cyclone III. On the Sakura-G
board, the results are comparable for all three distinguishers.

C. Discussion and Future Work

Distance correlation has shown to be at least as useful, in the
side-channel analysis context, as the product-moment Pearson
correlation coefficient. We expect it to perform even better in
specific scenarios where a significantly non-linear relationship
appears, such as attacking some ASICs [7].
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Figure 1: Evariste III + Altera Cyclone III.
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Figure 2: Sakura-G (Xilinx Spartan 6).
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Figure 3: DPABoard (Xilinx Artix 7).



The main pitfall of the distance correlation is the compu-
tational and memory complexity when using the described
distance matrix approach, quadratic with the number of samples
(i.e., power traces), in comparison with linear complexity of
the product-moment correlation [18], rendering it unpractical
for more complex scenarios, such as attacking protected imple-
mentations, where significantly more power traces are required
due to the noise amplification effect. A possible solution to
this problem could be using a different approach to approxi-
mating the distance covariance or reducing the overall attack
complexity. On the other hand, the computational complexity
grows only linearly with the sample dimensions.

Given the multivariate nature of the distance correlation,
it could be considered for multivariate leakage exploitation,
e.g., effectively attacking protected (masked) cryptographic
implementations. Moreover, given the fact that the distance
correlation is equal to zero if and only if the variables are
independent, its ability to measure both linear and non-linear
dependence, and its generally weak assumptions on the exam-
ined variables, it could serve as a basis for leakage assessment
methodology.

IV. CONCLUSION

In this paper, we have given a fair experimental compar-
ison of the Pearson and distance correlation coefficients as
side-channel distinguishers attacking AES on three different
FPGA platforms. Furthermore, we have proposed and evaluated
a clock cycle-based distinguisher. We have shown that the
distance correlation is a powerful alternative to the widely
known Pearson correlation. Moreover, we have discussed the
distance correlation properties and we have proposed further
use cases worth future evaluation.
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