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Abstract—Correlation power analysis (CPA) is one of the most
common side channel attacks today, posing a threat to many
modern ciphers, including AES. The simplest method to extract
the correct key guess is selecting the guess with the maximum
Pearson correlation coefficient. We propose another distinguisher
based on a significant change in the correlation trace rather
than on the absolute value of the coefficient. Our approach
performs better than the standard CPA, especially in the noisy
environment.

Index Terms—Side channel attack, AES, correlation power
analysis, Pearson correlation coefficient, key distinguisher, edge
detection

I. INTRODUCTION

Side channel attacks (SCAs) pose a serious security threat
to many modern cryptographic devices, even those based
on ciphers considered mathematically secure, such as AES.
One of the most common SCAs today is differential power
analysis (DPA) [1] and especially its enhanced, correlation
based variant, correlation power analysis (CPA) [2], [3].

The CPA attack is based on measuring the power con-
sumption of a cryptographic device while encrypting random
data, and then correlating obtained power traces with the
consumption predictions for each key candidate. These pre-
dictions are usually based on the knowledge of the cipher
implementation and of the random data used. Comparing
the correlation coefficients for different key candidates and
selecting the one with the strongest correlation gives us a key
candidate. The nature of the CPA attack allows revealing the
key in smaller portions, e.g. bytes or nibbles, thus making the
whole attack much less computationally demanding than in
case of attacking the whole key at once by brute-force.

In this paper, we propose a different way of extracting the
key guess, based on a significant change in the correlation
trace, rather than on the correlation coefficient magnitude.

II. RELATED WORK

Differential power analysis (DPA), a side channel attack
applicable to the implementations of many ciphers such as
DES or AES, was introduced in [1], [4]. Different variants of
the DPA attack were introduced over the time, one of them
being the Correlation power analysis (CPA) [2], [3], using
Pearson correlation coefficient.

Differential power analysis distinguishers are discussed e.g.
in [5]. Various metrics for the evaluation of the attack were
published, such as success rate [6], entropy guessing [7] or

mutual information analysis [8]. A statistical model for a side
channel attack analysis is presented in [9]. Many papers, such
as [10], deal with the noise and interference problems when
performing the SCAs.

Our approach is based on detecting a sudden change (edge)
in a correlation trace (a time series of a correlation coefficient).
In [11] and [12], both the theory and computational approach
to the edge detection are presented.

III. CPA ATTACK EVALUATION

Our primary research focus in this paper is AES-128,
a block cipher commonly used in many hardware cryptosys-
tems. Since AES implements an 8 bit S-Boxes, attacking a byte
of the key at a time is possible [3]. We are able to predict the
power consumption of the device when encrypting/decrypting
a certain plain/cipher text, and since there are only 28 = 256
possibilities for a byte of the key, comparing a real power
consumption with our predictions is computationally accept-
able. Since we do not know the exact time when the predicted
values correlate, we need to measure the consumption during
the whole encryption, giving us a finite number of samples.

We call this collection of samples, obtained during a single
encryption, a power trace. Correlating our 256 predictions with
real power consumption at each sample point gives us 256
different time series of a Pearson correlation coefficient, which
we call correlation traces. These can be seen in Figure 1.

A. Motivation

Correlating our predictions with each sample point in the
power trace gives us a correlation matrix with dimensions
m × 256, with m being the number of samples per trace.
Looking for the maximum Pearson correlation coefficient in
this matrix gives us a hint for selecting the correct key
candidate. In situation depicted in Figure 1a, this approach
works just fine.

However, the shape of the correlation curve in time is more
informative, than the magnitude of the correlation coefficient
itself. In Figure 1b, one can easily identify the correct key
candidate by the naked eye, while looking for the Pearson
correlation coefficient with the highest absolute value fails.
With more measurements and power traces available, the spike
on the red curve would grow bigger, while other samples
would converge to zero.



(a) Correlation traces based on a sufficient amount of power traces. The correct
key candidate is colored blue.

(b) Correlation traces based on an insufficient amount of power traces.
Searching for a (negative) maximum correlation coefficient leads us to the
wrong key candidate, which is colored blue. The correct key candidate is
colored red.

Figure 1. Correlation traces (a time series of a Pearson correlation coefficient
during the encryption), for all 256 key candidates.

According to our research, when correlated working vari-
able causes a change in the power consumption of the device,
an edge typically appears in the correlation trace. This problem
is very similar to image edge detection problem as described
in [11], [12].

Since these edge detecting operators are very sensitive to
noise, appropriate filtering/smoothing of the correlation traces
must be done first.

B. Noise Filtering/Smoothing

For our futher experimental purposes, we have chosen two
filters: the Moving average filter and the Gaussian filter.
Moving average filter is defined as follows: Assume that f(t)
is a discrete variable, then convolution

(f ∗ma(d))(t) =
1

d

t+d d2 e−1∑
i=t−b d2 c

f(i) (1)

is the result of filtering the variable f(t) using Moving average
filter with diameter d.

Gaussian filter is defined as follows: Assume that f(t) is
a discrete variable, then convolution

(f ∗ g(d, σ))(t) =

t+d d2 e−1∑
i=t−b d2 c

f(i) ·
exp(− (i−t)2

σ2 )

norm(d, σ)
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is the result of filtering the variable f(t) using Gaussian filter
with diameter d and deviation σ, where

norm(d, σ) =

d d2 e−1∑
j=−b d2 c

exp(− j
2

σ2
) (3)

is the normalization, making sure that the sum of used Gaus-
sian filter equals to 1.

C. Edge Detection

After the noise filtering, the edge detection takes place.
There are two approaches to this: a first-derivative based and
a second-derivative based [11].

When the first derivative approach is used, the filtered cor-
relation traces are processed with the first derivative operator.
Searching for the maximum/minimum value in these processed
correlation traces works well as a CPA key distinguisher, as
presented in Section IV. When using the second derivative
approach, the algorithm searches for significant zero-crossings
of the Laplacian of the correlation trace. Both approaches are
compared in Section IV.

The discrete derivative operators, as well as the implemen-
tations of the filters, are described in the following Subsection.

D. Computational Approach

As suggested in [12], both derivative operators and filtering
are performed using a discrete convolution. The Moving
average filter with diameter d can be easily implemented as
a convolutional kernel:

ma(d) =
1

d
[1, 1, . . . , 1︸ ︷︷ ︸

d×

]. (4)

In a case of the Gaussian filter with deviation σ, appro-
priate convolutional kernel of width d can be obtained using
a formula:

G(x, σ) ∝ exp(−x
2

σ2
), (5)

and making sure, that the sum of all the terms in the kernel
is equal to 1. This can be done by dividing every term of
the kernel by the sum of all the kernel terms. For example,
Gaussian kernel g(d = 5, σ = 1) looks like

g(5, 1) = [0.06135, 0.2448, 0.3877, 0.2448, 0.06135]. (6)

For the approximation of the first derivative, the following
convolutional kernel is used:

d1 = [−1, 0, 1], (7)

while for the approximation of the second derivative, the
discrete Laplace kernel is used:

d2 = [1,−2, 1]. (8)



Table I
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, XILINX ARTIX 7 WITH A SWITCHING POWER SUPPLY.

# of power traces available
Evaluation method 100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 0 0 0 0 0 0 2 4
First derivative + Moving Average (d=25) 0 0 0 0 0 11 16 16 16 16
First derivative + Gaussian (d=25, σ=12) 0 0 1 1 7 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12) 0 0 0 0 0 0 1 6 9 9

Table II
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, XILINX ARTIX 7 WITH A LINEAR POWER SUPPLY.

# of power traces available
Evaluation method 100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 2 3 14 16 16 16 16 16
First derivative + Moving Average (d=25) 0 3 6 13 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=10) 0 1 5 15 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12) 0 1 2 5 5 6 7 7 7 7

Thanks to the associativity of convolution, the smoothing
and derivative operator can be precomputed beforehand, re-
sulting in one kernel performing both operations at once.
When filtering using Gaussian, these kernels (first derivative,
Laplacian) can be obtained using following formulas:

G(x, σ)′ ∝ x

σ2
· exp(−x

2

σ2
), (9)

∆G(x, σ) ∝ x2 − σ2

σ4
· exp(−x

2

σ2
). (10)

∆G(x, σ) is also known as Laplacian of Gaussian.
The edge detection on a correlation trace can now simply

be done as a convolution, with time complexity O(m × d),
where m is number of samples in the correlation trace, and d
is the diameter of the filter.

Searching for the key guess in the correlation matrix con-
sists of applying this convolution on each row of the matrix
and looking for the largest value (in case of first derivative) or
zero-crossings (in case of Laplacian) in the resulting matrix.

IV. EXPERIMENTAL RESULTS

We have evaluated proposed distinguishers regarding the
amount of correctly revealed bytes of the AES-128 cipher key.
The platforms we used to evaluate presented methods were
following:
• DPABoard [13] (open experimental board) with Xilinx

Artix 7 FPGA in two revisions: with a switching power
supply, and with a linear power supply,

• Sakura-G board [14] with Xilinx Spartan 6 FPGA,
• Evariste III system [15] with development board con-

taining Altera Cyclone III FPGA, customized by remov-
ing the decoupling capacitors.

A. DPABoard (Xilinx Artix 7)

Tables I and II contain the number of succesfully recovered
bytes of the cipher key. The processed correlation traces
were based on the power traces measured on an open DPA
evaluation board with Xilinx Artix 7. Different distinguishers
were used to obtain a key guess:

1) standard CPA, maximizing the Pearson correlation co-
efficient,

2) maximizing the first derivative of correlation traces,
smoothed either using Moving average or Gaussian filter,

3) searching for zero-crossings of the Laplacian of corre-
lation traces, smoothed using Gaussian filter.

We have evaluated these distinguishers using two different
revisions of the board: Table I presents the results when
using the DPABoard with a switching power supply; Table
II presents the results when using the DPABoard with a linear
power supply.

The performance of First derivative distinguisher is much
better than the performance of standard CPA (Maximum
Pearson correlation coefficient) in case of noisy traces obtained
from board with a switching power supply. While in case of
First derivative approach we needed just 2,500 power traces
to succesfully reveal all 16 bytes of the key, standard CPA did
not reveal any byte of the key with the same amount of power
traces, and only 4 bytes with 100,000 power traces available.

Even in noiseless environment with a linear power supply,
our method provides slightly better results. While in case of
First derivative approach we needed just 1,000 power traces to
successfully reveal all 16 bytes of the key, in case of a standard
CPA we needed 2,500 traces to fully recover the whole key.

The Laplacian of Gaussian distinguisher did not prove to be
any more effective than the standard CPA. This may be due to
the higher noise sensitivity of the second derivative approach.

B. Sakura-G (Xilinx Spartan 6)

Table III presents the results for Sakura-G board, equipped
with two Xilinx Spartan 6 chips and a linear power supply.
In this case, all methods perform similar, although the first
derivative based distinguishers provide a slightly better results
when there is insufficient amount of power traces available.

C. Evariste III + Altera Cyclone III board

Table IV presents the results for the board with Altera
Cyclone III chip and a linear power supply. In this case, first
derivative distinguishers and standard CPA are comparable



Table III
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, SAKURA-G (XILINX SPARTAN 6 WITH A LINEAR POWER SUPPLY).

# of power traces available
Evaluation method 100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 2 2 5 12 16 16 16 16 16 16
First derivative + Moving Average (d=30) 1 4 6 13 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=12) 2 3 6 12 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12) 1 2 5 11 16 16 16 16 16 16

Table IV
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, ALTERA CYCLONE III WITH A LINEAR POWER SUPPLY.

# of power traces available
Evaluation method 100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 2 5 12 16 16 16 16 16 16
First derivative + Moving Average (d=25) 2 4 6 10 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=10) 2 3 4 11 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=10) 0 1 1 2 2 2 6 8 11 11

again. First derivative approach may perform a little better
for a low amount of power traces, nevertheless, at least 1,000
power traces were necessary for a recovery of the full key.

V. CONCLUSION

We have presented a new approach to the final step of
the CPA attack, which is a selection (distinguishment) of the
correct key guess from the correlation traces.

Selecting the key candidate which maximizes the correlation
coefficient, according to the maximum likelihood principle, is
quite sufficient if the cryptographic device runs in an environ-
ment well suitable for power trace measurements. However,
this method may fail with presence of noise or interference
caused e.g. by a switching power supply.

We show that our distinguisher based on first derivative edge
detection is more successful when evaluating the correlation
traces obtained in noisy environment, such as that made by the
switching power supplies. Using our method, approximately
2,500 power traces were necessary for a recovery of the whole
key, while maximization of Pearson correlation coefficient
failed to do so even with 100,000 power traces.

While working with low-noise linear power supplies and
having a sufficient amount of power traces available, both
approaches work equally good. When the amount of power
traces is insufficient, our first derivative method may provide
slightly better results as well. The Laplacian of Gaussian based
distinguisher did not prove to be much useful.

The extra time complexity of proposed methods is insignif-
icant compared to the rest of the CPA attack. The reduction
of the power traces necessary to reveal the cipher key is even
more beneficial considering that the measuring of the power
traces is by far the most time consuming part of the attack.
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[13] M. Bartı́k and J. Buček, “A low-cost multi-purpose experimental fpga
board for cryptography applications,” in Advances in Information, Elec-
tronic and Electrical Engineering (AIEEE), 2016 IEEE 4th Workshop
on. IEEE, 2016, pp. 1–4.

[14] H. Guntur, J. Ishii, and A. Satoh, “Side-channel attack user reference
architecture board sakura-g,” in Consumer Electronics (GCCE), 2014
IEEE 3rd Global Conference on. IEEE, 2014, pp. 271–274.

[15] N. Bochard, C. Marchand, O. Pet’ura, L. Bossuet, and V. Fischer,
“Evariste iii: A new multi-fpga system for fair benchmarking of hard-
ware dependent cryptographic primitives,” in Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2015, 2015.


