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Abstract—Dynamic logic reconfiguration is a concept which
allows for efficient on-the-fly modifications of combinational
circuit behaviour in both ASIC and FPGA devices. The recon-
figuration of Boolean functions is achieved by modification of
their generators (e.g. shift register-based look-up tables) and it
can be controlled from within the chip, without the necessity of
any external intervention. This hardware polymorphism can be
utilized for the implementation of side-channel attack counter-
measures, as demonstrated by Sasdrich et al. for the lightweight
cipher PRESENT.

In this work we adopt these countermeasures to two of the AES
finalists, namely Rijndael and Serpent. Just like PRESENT, both
Rijndael and Serpent are block ciphers based on a substitution-
permutation network. We describe the countermeasures and
adjustments necessary to protect these ciphers using the resources
available in modern Xilinx FPGAs. We describe our VHDL
implementations and evaluate the side-channel leakage and
effectiveness of different countermeasure combinations using a
methodology based on Welch’s t-test.

We did not detect any significant leakage from the fully
protected versions of our implementations. We show that the
countermeasures proposed by Sasdrich et al. are, with some mod-
ifications compared to the protected PRESENT implementation,
successfully applicable to AES and Serpent.

Index Terms—Internet of Things, Embedded Security, Cryp-
tography, Side-Channel Analysis, Dynamic Reconfiguration

I. INTRODUCTION

The use of computers and various embedded systems has
become our daily routine in the past years. In the upcoming
Internet-of-Things (IoT) era, smart cities and smart homes
are expected to bring even more embedded devices into our
everyday lives. The presence of such smart devices, including
personal assistants, cars and many more, makes our private
lives more vulnerable than ever before. In order to protect
sensitive information, various authentication, authorization,
and encryption schemes need to be employed. Even though
these algorithms may be considered secure, their implemen-
tations may still be vulnerable to side-channel attacks. These
attacks exploit the fact that sensitive information may leak
through side channels, such as the power consumption of the
device [1], [2] or its electromagnetic radiation [3]. Given the
typical deployment of IoT devices, where the attacker may
easily gain physical access and tamper with the device, these
attacks pose a serious threat.

To prevent side-channel attacks, many different countermea-
sures have been proposed. Masking is a popular approach

based on randomizing intermediate cipher values by introdu-
cing a random mask [4], [5], making it difficult for an attacker
to predict the processed values. Another approach, called
hiding, tries to hide the information leakage, e.g. through
the use of dual-rail logic [6]. Dynamic reconfiguration has
been proposed as another hiding countermeasure to achieve
side-channel resistance [7]. A combination of countermea-
sures implemented using dynamic logic reconfiguration is
proposed in [8] and evaluated on the lightweight block cipher
PRESENT [9].

In this paper, we extend the work presented in [8] by using
dynamic logic reconfiguration to secure two of the Advanced
Encryption Standard (AES) competition finalists, Rijndael [10]
(winner of the competition, nowadays therefore known as the
AES) and Serpent [11]. We describe our implementations
and the non-straightforward way in which we tailored the
countermeasures in [8] to AES and Serpent. We evaluate
the side-channel leakage and the effectiveness of different
countermeasure combinations.

II. THEORETICAL BACKGROUND

In this work, we intend to secure AES and Serpent using
the approach described in [8]. In the following subsections, we
first describe both AES/Rijndael and Serpent. Then we explain
the concept of dynamic logic reconfiguration on FPGA, and
finally we describe the implemented and evaluated counter-
measures.

A. AES Finalists: Rijndael and Serpent

Both ciphers share common features [12]. They are iterated
substitution-permutation networks (SPN) with a block size of
128 bits and possible key sizes of 128, 192 or 256 bits. The
plaintext (i.e. the data to be encrypted) is transformed into
a ciphertext by iteratively applying a number of operations.
Each iteration is called a round. Both ciphers also describe
a method for expanding the secret key into a number of
subkeys which are used as an input to each round.

1) AES/Rijndael: Rijndael [10] consists of 10, 12 or 14
rounds (depending on the key length). First, the secret key
is XORed with the plaintext. After that, a number of round
transformations is performed. Each round consists of four
layers: a non-linear substitution layer (SubBytes, i.e. 16 par-
allel applications of an 8-bit substitution box or S-box), two



linear mixing layers (ShiftRows and MixColumns) and a XOR
with the round subkey (AddRoundKey). In the last round, the
MixColumns transformation is omitted.

2) Serpent: Serpent [11] consists of 32 rounds. First, an
initial permutation is applied and then the round transforma-
tions take place. Each round consists of three layers: a XOR
with the round subkey, a non-linear substitution layer (i.e.
32 parallel applications of one of the eight specified 4-bit
S-boxes, which are different in the consecutive rounds), and
a linear transformation. In the last round, a second XOR takes
place instead of the linear transformation. In the end, the final
permutation is applied.

B. Dynamic Logic Reconfiguration

In FPGAs, combinational circuits are typically implemented
using Look-Up Tables (LUTs), i.e. configurable primitives
which store truth tables of k-input Boolean functions f : Bk →
B. Dynamic logic reconfiguration allows for the run-time
alteration of the circuit behaviour by modifying the content of
specific look-up tables, while leaving the routing intact. The
reconfiguration of LUTs is done from within the chip itself
and can be achieved e.g. by using a shift register (allowing for
serial programming) and a cascade of addressing multiplexers.
In Xilinx FPGAs [13], this functionality is provided by k-
input Configurable Look-Up Tables (CFGLUTs) with a serial
configuration input and output (allowing to connect CFGLUTs
in separately configurable chains). In Xilinx Spartan-6 FPGAs,
5-input CFGLUTs are available.

In order to implement dynamically reconfigurable Boolean
functions f : Bn → B, where n > k, multiple k-input CFG-
LUTs are required in combination with addressing multiplex-
ers (using Boole’s expansion, also referred to as the Shannon
expansion [14]). Specifically, to implement an n-input function
using k-input CFGLUTs and 2-to-1 multiplexers, we need
2n−k CFGLUTs and 2n−k − 1 multiplexers.

Multiple-output Boolean functions f : Bn → Bm can be
trivially implemented as m single-output Boolean functions
fi : Bn → B.

C. Countermeasures

To protect AES and Serpent, we have implemented coun-
termeasures that were proposed (and evaluated on PRESENT)
by Sasdrich et al. in [8]. In this subsection, we briefly describe
these countermeasures.

1) S-box Decomposition: Since information leakage often
occurs based on changing values in registers, and since the
output of the non-linear substitution layer is a frequent target
of side-channel attacks, the S-box decomposition countermea-
sure is based on avoiding the storage of the S-box outputs
into such registers. This is done by decomposing the S-box
into two bijections R1, R2, where

S-box(x) = R2(R1(x)), (1)

and placing the register in between the two bijections. The
number of possible n-bit bijections for R1 is equal to (2n)!.

For each option, a bijection R2 can be found such that Eq. (1)
holds.

Thanks to dynamic logic reconfiguration, different bijec-
tions R1, R2 can easily be used for every encryption. Starting
with R1 being an identity and R2 being the actual S-box, the
bijections for the next encryption are computed by randomly
selecting two pairs of elements in the R1 mapping, swapping
them, and recomputing R2 accordingly.

2) Boolean Masking: In order to randomize intermediate
values, a random mask is added (XORed) to the data prior to
encryption, and subtracted (i.e. once again XORed) after the
encryption. For the cipher to produce valid results working
with masked data, various alterations must be done.

Boolean masking can be combined with the previously
mentioned bijective S-box decomposition and can once again
take advantage of dynamic logic reconfiguration. Two different
random masks m1,m2 are used for every encryption: mask m1

is used outside the decomposed S-box, and mask m2 is used
inside of it. If the substitution layer would be the only layer in
the round, the previously mentioned bijections R1, R2 would
get adjusted as follows:

R′1(x) = R1(x⊕m1)⊕m2, (2)
R′2(x) = R2(x⊕m2)⊕m1. (3)

The function R′1 first subtracts/removes mask m1, then per-
forms the R1 bijection mapping, and finally masks this value
using m2. The output of this function is stored in the register.
Analogically, the function R′2 subtracts the mask m2, does
the R2 mapping and masks the result using m1. This way, the
same CFGLUTs can be used for both the S-box decomposition
and the masking, saving both area and reconfiguration time.

However, to deal with the linear transformation layers,
further alterations to the R′1, R

′
2 bijections need to be done.

We can exploit one of these two facts:

f(x) = f(x⊕ f−1(m))⊕m, (4)
f(x) = f(x⊕m)⊕ f(m), (5)

which both hold when f(x) is a linear mapping. These give
us two different and fairly straightforward approaches to take
linear transformations f(·) into account.

One option is to alter R′2 function in terms of Eq. (4) so that
m1 processed by the inverse transformation is used to mask
the data, allowing to subtract m1 in R′1:

R′1(x) = R1(x⊕m1)⊕m2, (6)

R′2(x) = R2(x⊕m2)⊕ f−1(m1). (7)

The second option is to use m1 for masking in R′2, and to
alter R′1 according to Eq. (5), so that m1 processed by the
linear transformation gets subtracted:

R′1(x) = R1(x⊕ f(m1))⊕m2, (8)
R′2(x) = R2(x⊕m2)⊕m1. (9)

Notice that further alterations may be required for the first
and the last round, depending on the selected approach.



The last obstacle is the subkey XOR layer, which can be
considered an affine transformation. Suppose we have a vector
x, which gets XORed with the subkey: x ⊕ k. Suppose we
process masked data the same way: (x ⊕ m) ⊕ k, then by
subtracting the mask m with no alterations we have:

((x⊕m)⊕ k)⊕m) = x⊕ k. (10)

Therefore, no further alterations need to be done to take the
XOR layer into account.

3) Register Precharge: Because the same masks are used
for the whole encryption (i.e. for every round), the leakage
occurs in the register, since

HD(x⊕m, y ⊕m) = HD(x, y), (11)

where HD(x, y) denotes the Hamming distance between x
and y. To avoid this leakage, the register is duplicated and
the processed data are interleaved with random data. This
technique avoids leakage, however, it reduces the throughput
of the circuit when it is implemented using an architecture that
is not fully unrolled.

III. SECURE CIPHER DESIGN

In this section, we examine the specifics of both
AES/Rijndael and Serpent and we propose a manner in which
these ciphers can be secured against side-channel attacks using
the countermeasures explained in Section II-C.

In order for our implementations to fit into a Xilinx Spartan-
6 FPGA device, we take into account that CFGLUTs with at
most 5 input bits are available. When a platform with smaller
CFGLUTs is available, the dynamic logic reconfiguration
method can be implemented using the approach described in
Section II-B.

A. AES/Rijndael

Rijndael employs an 8×8 S-box, which can be considered as
a function S-boxRijndael : B8 → B8. Therefore, to implement
the Rijndael S-box using reconfigurable logic, 8·28−5 = 64 (5-
input) CFGLUTs and 8 ·(28−5−1) = 56 (2-to-1) multiplexers
are necessary. Moreover, the S-box decomposition counter-
measure suggests the S-box to be split into two bijections
R1, R2 : B8 → B8, which doubles the amount of CFGLUTs
and multiplexers in the secured version. Since the Rijndael
algorithm applies 16 S-boxes in parallel, this brings the total
count up to 2048 (5-input) CFGLUTs and 1792 (2-to-1)
multiplexers.

The decomposition into two bijections is done in a similar
fashion as described in Section II-C, with the round register
being placed in between the two bijections. For the AES
algorithm, we have decided to swap 8 pairs of elements in
the R1 bijection after every encryption (in contrast to the
PRESENT 4-bit S-box decomposition in [8], where only two
pairs get swapped).

To implement the Boolean masking countermeasure as de-
scribed in Section II-C, bijections R′1, R

′
2 (i.e. the decomposed

S-box combined with masking) must be altered. We choose

Figure 1: Serpent S-box Decomposition

the option where R′2 adds the mask m1 and R′1 subtracts m1

processed by the linear transformations (see Eq. (8)):

R′1(x) = R1(x⊕MixColumns(ShiftRows(m1)))⊕m2,
(12)

R′2(x) = R2(x⊕m2)⊕m1. (13)

Note that the data are masked by m1 in the second bijection
R2 and that this mask is subtracted in the following round.
Therefore prior to the first round, the input data must be
masked properly. Also, the last round of Rijndael omits the
MixColumns operation. Therefore, in the last round, only
ShiftRows(m1) must be subtracted in R′1, or additional un-
masking of the output must be done (which is our choice).

The implementation of the register precharge requires the
register to be duplicated and the controller to be adjusted
appropriately, such that the processed data are interleaved with
random data.

B. Serpent

Unlike Rijndael or PRESENT, Serpent defines eight dif-
ferent 4 × 4 S-boxes. Each S-box is used in a different
round. One way to implement the S-box decomposition is to
decompose each of these S-boxes into two bijections, resulting
in 16 bijections in total. We have decided for an approach
where the first bijection R1 is shared among all S-boxes,
while the other 8 bijections Ri

2, i ∈ {0, .., 7}, implement
the eight S-boxes, with the correct output being selected by
a multiplexer. The eight decomposed Serpent S-boxes are
depicted in Figure 1. Notice the demultiplexer, which selects
the right Ri

2 bijection, while the other bijections are fed with
zeroes. This demultiplexer is necessary to prevent glitches
that lead to information leakage. Since the Serpent S-boxes
realize the functions S-boxiSerpent : B4 → B4, only four
CFGLUTs are necessary to implement the bijection. Given the
selected architecture, 4 + 8 · 4 = 36 CFGLUTs are required
to decompose all eight S-boxes. Since the S-box is applied 32
times in parallel, this results in 1152 CFGLUTs in total.

Boolean masking is implemented similarly to the Rijndael
algorithm, with m1, processed by the linear transformation,



being subtracted in the R′1 bijection (see Eq. (8)). Suppose
the Serpent linear transformation is LSerpent, then:

R′1(x) = R1(x⊕ LSerpent(m1))⊕m2, (14)
R′2(x) = R2(x⊕m2)⊕m1. (15)

Regarding the first round, similarly to the Rijndael approach,
appropriate initial masking of the input data must be performed
first. Also, there is no linear transformation in the last round,
therefore, either the unprocessed mask m1 gets subtracted in
R′1, or final unmasking must be performed.

Register precharge is once again implemented simply by
duplicating the round register and altering the controller ap-
propriately to interleave the processed data with random data.

C. Reconfiguration Controller

For every encryption, new bijections are generated (as
described in Section II-C), as well as new masks m1,m2.
This requires the CFGLUTs configurations to be computed
and loaded prior to every encryption. The reconfiguration of
all CFGLUTs can be done using different levels of parallelism
(the CFGLUTs “programming” I/O can be variously chained,
given its shift register nature).

IV. SIDE-CHANNEL LEAKAGE EVALUATION

In this section, we present our experimental set-up and
a leakage methodology used to evaluate all combinations of
previously described countermeasures.

A. Set-up and Methodology

We choose the Sakura-G board [15] with a Xilinx Spartan-6
FPGA as our evaluation platform. AES/Rijndael and Serpent
VHDL implementations with a 128-bit key are evaluated.
The power traces are measured using a PicoScope 6406D
oscilloscope.

Leakage is evaluated using the non-specific univariate first-
order Welch’s t-test as described in [16]. This evaluation
method consists of two phases. In the active phase, power
traces are collected, each trace measured while encrypting
either a random or a (preselected) constant plaintext. In the
analytical phase of the evaluation, Welch’s t-test statistic is
computed in each sampling point, examining the null hy-
pothesis of equal population means (where one population
consists of random plaintext measurements and the other
population consists of constant plaintext measurements). For
every evaluation, 1 million power traces are captured.

The necessary random data (random pairs to be swapped in
the bijection, random masks, register precharge with random
values) are generated externally and sent to the cryptographic
device alongside the plaintext. This approach allows us to
easily enable or disable specific countermeasures.

B. Results

We evaluate every possible combination of the proposed
countermeasures:
(a) Unprotected
(b) Register Precharge

(c) Masking
(d) Masking + Register Precharge
(e) S-box Decomposition
(f) S-box Decomposition + Register Precharge
(g) S-box Decomposition + Masking
(h) S-box Decomposition + Masking + Register Precharge

For every implementation, 1 million power traces are mea-
sured and processed using a non-specific first-order t-test,
as described earlier. Figure 2 depicts the t-values during the
AES encryption and Figure 3 depicts the t-values during the
Serpent encryption. The sensitive information leakage is the
most prominent for the unprotected versions, as expected.

It is also visible that different countermeasures and their
combinations have various influence on the significance of
the detected leakage. Figures 2c and 3c show that a coun-
termeasure based on masking only protects the first round of
the cipher, while, starting from the second round, the leakage
is comparable to the unprotected version (cf. Figures 2a
and 3a). Figures 2d and 3d suggest that masking becomes
more effective in combination with register precharge (which
is expected, as discussed in Section II-C).

Figures 2h and 3h show results with all three countermea-
sures combined. As can be seen, no significant first-order
leakage is detected when evaluating these fully protected
implementations. However, the used TVLA methodology is
merely a first step in the evaluation of a side-channel security
of the implementations and the results do not provide any
guarantee of a security level [17]. This is not only because of
a high risk of both false positives and false negatives, but
also because only univariate statistics is considered in our
methodology.

V. CONCLUSION

In this paper, we describe and evaluate side-channel attack
protected AES and Serpent implementations, which are based
on an approach demonstrated by Sasdrich et al. [8] for the
PRESENT cipher. These implementations utilize dynamic
logic reconfiguration, which can easily be deployed in both
FPGA and ASIC designs. We describe a method by means of
which a generic substitution-permutation network can be pro-
tected against side-channel attacks, and we tailor the approach
to a Xilinx Spartan-6 FPGA for the protection of both AES
and Serpent.

We demonstrate the effectiveness of the implemented coun-
termeasures by evaluating the side-channel leakage using
Welch’s t-test, with different combinations of countermeasures
in place. We did not detect any significant leakage from
the protected versions of both AES and Serpent encryption
implementations.
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Figure 2: Results of the AES/Rijndael t-test, where the t-value is shown on the vertical axis and the time samples during
encryption are shown on the horizontal axis
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