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Abstract—Rainbow, a layered multivariate quadratic digital
signature, is a candidate for standardization in a competition-like
process organized by NIST. In this paper, we present a CPA side-
channel attack on the submitted 32-bit reference implementation.
We evaluate the attack on an STM32F3 ARM microcontroller,
successfully revealing the full private key. Furthermore, we
propose a simple masking scheme with minimum overhead.

Index Terms—post-quantum cryptography, digital signature,
multivariate quadratic, side-channel analysis, embedded systems

I. INTRODUCTION

Most currently used standards for asymmetric cryptography
are based on factorization or solving of a discrete loga-
rithm [1], i.e., problems solvable in polynomial time using
Shor’s algorithm [2] on a quantum computer. One of the
current NIST’s standardization candidates for a post-quantum
digital signature is Rainbow [3], a layered generalization of
the Unbalanced Oil and Vinegar scheme [4]. The scheme is
based on a multivariate quadratic system of equations over
a finite field; the general problem of solving a set of quadratic
equations is NP-hard [5]. The winning standards should allow
efficient implementations in embedded systems to consider the
upcoming IoT era. Moreover, cryptographic implementations
in embedded environment are known to be vulnerable to side-
channel attacks [6], [7]. A Correlation Power Analysis (CPA)
attack on a naı̈ve 8-bit implementation of Rainbow is presented
in [8].

In this work, we propose a CPA attack on the 32-bit refer-
ence implementation of Rainbow from the NIST competition’s
second round, which has been submitted as a candidate for
NIST post-quantum digital signature standardization and is
currently in the third round. We propose a way to extract
the private key from the device and evaluate our attack on an
STM32F3 ARM microcontroller. Finally, we propose a simple
masking countermeasure.

II. PRELIMINARIES

A. Rainbow

Let F be a finite field and v1, v2, . . . , vu, vu+1 ∈ N be u+1
parameters, such that 0 < v1 < v2 < · · · < vu < vu+1 = n.
Define two sets for each layer, where a layer is indexed by i:

∀i ∈ {1, 2, . . . , u} :Vi = {1, 2, . . . , vi}, |Vi| = vi, (1)
Oi = {vi + 1, . . . , vi+1}, |Oi| = oi. (2)

Both sets contain indices of variables. Vi contains indices
of vinegar variables in i-th layer, and Oi contains indices
of its oil variables. Using these parameters, define a set
of m = n − v1 multivariate quadratic polynomials with n
variables called central map F , structured to u layers.

Central map F = (f (v1+1), f (v1+2), . . . , f (n)) is a set
of multivariate quadratic polynomials with

f (k)(x1, . . . , xn) :=
∑

i,j∈Vl
i≤j

α
(k)
i,j xixj +

∑
i∈Vl
j∈Ol

β
(k)
i,j xixj , (3)

where α(k)
i,j , β

(k)
i,j ∈ F are quadratic coefficients (other quad-

ratic coefficients are set to zero) and l ∈ {1, . . . , u} such that
k ∈ Ol. In this definition, linear and absolute coefficients are
omitted for simplicity as the reference implementation does
not use them and therefore they do not affect the attack. With
this structure of quadratic polynomials, F−1 can be solved
using a linear equation solver [3].

In the public key, oil and vinegar variables are mixed to
hide the unique structure of quadratic polynomials. The mixing
process is realized using two affine maps, S : Fm −→ Fm, T :
Fn −→ Fn. Again, the translations are omitted for simplicity,
so two linear maps represented by matrices S ∈ Fm×m and
T ∈ Fn×n are considered.

The private key is then defined as SK := (S−1, F, T−1)
and the public key as PK := (P ), where P = S ◦ F ◦ T :
Fn −→ Fm.

B. Reference implementation

Three variants of the Rainbow signature scheme are pro-
posed in the NIST competition, and their reference imple-
mentations are available. The Cyclic variant is motivated
by Petzoldt’s cyclic Rainbow scheme [9], the Compressed
variant stores the private key in the form of a 512-bit seed, and
the Classic variant stores plain matrices. We will discuss only
the Classic variant Ia1 with parameters selected to fit NIST
security categories I and II.

This two-layered (u = 2) variant uses m = 64 quadratic
polynomials with n = 96 variables over F = GF (22

2

) =
GF (16). Layers are structured as (v1, v2, v3) = (32, 64, 96)

1Classic variant Ia from the second round of NIST competition, i.e.,
F = GF (16), (v1, o1, o2) = (32, 32, 32). The third round candidate uses
(v1, o1, o2) = (36, 32, 32), requiring only marginal alterations of our work.



and (o1, o2) = (32, 32). This variant uses matrices S and T
of the form

S = S−1 =

(
I S′

O I

)
, (4)

T =

 I T (1) T (2)

O I T (3)

O O I

 , T−1 =

 I T (1) T (4)

O I T (3)

O O I

 , (5)

where S ∈ F64×64, T ∈ F96×96, their submatrices are
elements of F32×32, O is zero matrix, I is identity matrix,
and T (4) := T (1) ·T (3)−T (2). The storage of the central map
is not relevant to our attack. In the following text, we denote
x̃, y ∈ F64 and x, ỹ ∈ F96, where x̃ = S−1 ·y and x = T−1 · ỹ

Each element of GF (22
2

) is identified by 4 bits, while
the considered reference implementation uses a 32-bit word.
A suitable Galois field was selected so that multiplication of
a vector by one element can be performed using simple bit
operations, allowing for word-level data parallelism. Conse-
quently, a vector of eight elements can be multiplied by one
element using only a few instructions.

E.g., consider a computation of x̃ = S−1 · y. First, the
product S′ · y33:64 is computed in column-wise order. Using
word-level parallelism, each matrix column is processed as
four vectors of eight elements (i.e., the external loop iterates
across all columns, and the internal loop iterates across four
vectors). Finally, the matrix-vector product x̃ = S−1 · y is
obtained by addition of the y vector, to take the identities I in
S−1 into account: x̃1:32 = S′ · y33:64 + y1:32, x̃33:64 = y33:64.

III. ATTACK

A. Correlation power analysis

Correlation Power Analysis [6], [7] is a side-channel attack
allowing extraction of secret information from the crypto-
graphic device. First, the adversary observes a physical vari-
able, such as device power consumption during the crypto-
graphic operation execution. The adversary then makes her
guess on the key (or an enumerable part of it), and correlates
her hypothetical consumption predictions with the observed
physical variable.

B. Idea of attack

To explain the attack, let us examine the signing process.
Process of signing: For document d, random salt s and

secret key SK = (S−1, F, T−1), we define the signature as
a pair (x, s) where

y := hash (hash (d) ||s) , (6)

x := T−1
(
F−1

(
S−1(y)

))
. (7)

The S−1 map is applied first, followed by the inverse of central
map F , and finally applying the T−1 map. Vinegar variables
for the first layer are generated randomly at the beginning of
the algorithm.

With matrices S−1 and T−1 known, we can reveal the cen-
tral map F easily with knowledge of public key PK = (P ).
Therefore, we aim our attack at the linear parts S and T

only. Note that S = S−1 and T−1 can be computed from
T and vice versa. We cannot choose the input of the S matrix
multiplication directly due to salting, but we can compute its
value as we supply d and know s from the resulting signature.

C. Attack on S map

In the first signing step, a matrix-vector product x̃ = S−1 ·y
is computed (detailed in subsection II-B). Our attack is aimed
at the computation of x̃1:32 = S′ · y33:64 + y1:32, where y is
a known vector and S′ is a part of the private key.

1) Attack I: Our CPA attack therefore is row-oriented. Each
element i of the final product can be expressed as

x̃i =

32∑
j=1

(S′i,j · yj+32) + yi. (8)

In the reference implementation, vector x̃i is initialized with
zeroes, then y is multiplied with S′ iteratively, and finally yi
is added due to the identity submatrices in Equation 4. This is
one of the differences compared to [8], where yi is added first,
making their attack substantially easier to mount. Our predic-
tions are based on a Hamming weight of the intermediate sum
value for j ∈ {2, . . . , 32}. Table I summarizes intermediate
values for Attack I.

TABLE I
ATTACK I: REVEALING A MATRIX ROW.

Target Intermediate value
S′
i,1 and S′

i,2 S′
i,1 · y33 + S′

i,2 · y34
S′
i,3

∑2
j=1(S

′
i,j · yj+32) + S′

i,3 · y35
S′
i,4

∑3
j=1(S

′
i,j · yj+32) + S′

i,4 · y36
...

...
S′
i,32

∑31
j=1(S

′
i,j · yj+32) + S′

i,32 · y64

In the first step, we target both S′i,1 and S′i,2 subkeys. Since
the attacked 4-bit subkeys can have 16 different values, and
there are 32 subkeys in the first matrix column, targeting
only S′i,1 would not lead to a useful solution. Using these
predictions, multiple subkeys are found in the first step since
the targeted intermediate value does not correspond to a unique
input value. To resolve this, we further process these subkeys
independently.

Another problem arises if S′i,2 = 0. The power predictions
would then be the same as targeting only S′i,1:

S′i,1 · y33 + S′i,2 · y34 = S′i,1 · y33 + 0 · y34 = S′i,1 · y33. (9)

The same problem occurs for each zero element in the row.
This problem can be overcome for columns with index k > 2.
Knowing S′i,j , j ∈ {1, . . . , k − 1}, our attack considers only
non-zero values, i.e., Si,k ∈ {1, . . . , 15}. If no significant cor-
relation with any of these 15 hypotheses is found, the element
is assumed to be a zero.

Furthermore, each row is multiplied by the same vector
y33:64, and therefore, even if we find the whole row, we are not
able to directly distinguish the row’s index. We obtain S′i,1:32
for some i ∈ {1, . . . , 32}.



2) Attack II: After revealing elements of the entire row,
the row index must be further identified. This is accomplished
by Attack II, targeting the final addition of vector y1:32.
The used power predictions are described in Table II. Using
Attack I and Attack II, we are able to reveal 28 rows2 out of 32
on average.

TABLE II
ATTACK II: ROW IDENTIFICATION.

Target Intermediate value
k ∈ {1, . . . , 32} in yk

∑32
j=1(S

′
i,j · yj+32) + yk

3) Attack III: The last step is revealing the remaining rows.
To do so, we exploit the word-level parallelism described
in subsection II-B. All the matrix rows are partitioned into
sets based on this parallelism, i.e., the rows that are processed
together are in their respective sets. For each row we attack,
the subkey hypotheses are considered together with the other
(already known) rows in the set. The power predictions are
then based on a Hamming weight of the whole word. We
define the aforementioned partitions and a hypothesis H l

j for
every column j and a certain set l ∈ {1, 2, 3, 4} as

Setl := {8 · (l − 1) + 1, . . . , 8 · l}, (10)

H l
j :=

∑
i∈Setl

HW(

j∑
k=1

(S′i,k · yk+32)). (11)

Considering leakage hypotheses of the entire set allows for
a more precise prediction based on the processed word.
For simplicity, we consider zeroes instead of the unknown
elements in S′.

Attack III for i-th row, where l is such that i ∈ Setl, uses
power predictions described in Table III. The predictions are
based on a sum of the most probable hypotheses for the other
rows determined by previous attacks, and on a hypothesis
for the i-th row. In case there are multiple missing rows in
the set, the row index must be identified. We accomplish this
using the last power prediction in Table III. The attack is then
repeated until the entire matrix S′ is revealed. Attack III is
only necessary for revealing the first two row elements S′i,1
and S′i,2. The following row elements can be revealed using
either Attack III, or using Attack I and Attack II.

D. Attack on T map

Matrix T−1 has three non-trivial sub-matrices T (1), T (4)

and T (3). We attack them separately, but similarly. First, we
express the matrix-vector multiplication described in subsec-
tion II-B using equations

ỹ1:32 + T (1) · ỹ33:64 + T (4) · ỹ65:96 = x1:32,

ỹ33:64 + T (3) · ỹ65:96 = x33:64,

ỹ65:96 = x65:96.

(12)

2Probability of non-zero values in the first two columns is (15/16)2,
the average number of these rows in a submatrix such as S′

is Mean(BinomialDistribution(32, (15/16)2)) = 28.125.

TABLE III
ATTACK III: REVEALING REMAINING ROWS.

Target Intermediate value I Power prediction
S′
i,1 and S′

i,2 S′
i,1 · y33 + S′

i,2 · y34 Hl
2 +HW(I)

S′
i,3

∑2
j=1(S

′
i,j · yj+32) + S′

i,3 · y35 Hl
3 +HW(I)

S′
i,4

∑3
j=1(S

′
i,j · yj+32) + S′

i,4 · y35 Hl
4 +HW(I)

...
...

...
S′
i,32

∑31
j=1(S

′
i,j · yj+32) + S′

i,32 · y64 Hl
32 +HW(I)

k ∈ Setl
∑32

j=1(S
′
i,j · yj+32) + yk HW(I)

As this multiplication is performed at the end of the signing,
we know the output x, but not the input ỹ. This is the main
difference compared to attacking the S matrix.

1) Attack on T (3): To reveal T (3), we use the Attacks I, II
as described for S, since we know the vector used in multi-
plication:

T (3)︸︷︷︸
secret key

·x65:96︸ ︷︷ ︸
known

+ ỹ33:64︸ ︷︷ ︸
unknown

= x33:64︸ ︷︷ ︸
known

. (13)

Unfortunately, we cannot use the final addition to determine
the row indices in this case. Instead, we use the right side of
the Equation 13 and the fact that

32∑
j=1

(T
(3)
i,j · xj+65) + xi+32 = ỹi+32. (14)

Similarly to the S matrix attack, we use Attack III to reveal
elements from rows beginning with zeroes. When T (3) is
found, we can compute

ỹ33:64 = T (3) · x65:96 + x33:64. (15)

2) Attack on T (4): Attacking T (4) is performed in the same
manner as attacking T (3), using equation

ỹ1:32 + T (1) · ỹ33:64︸ ︷︷ ︸
unknown

+ T (4)︸︷︷︸
secret key

·x65:96︸ ︷︷ ︸
known

= x1:32︸︷︷︸
known

. (16)

The submatrix T (4) is multiplied by a known vector x65:96.
We use the right side x1:32 of the Equation 16 for the row
index determination.

3) Attack on T (1): Attacking T (1) is performed in the same
fashion as attacking T (3) and T (4):

ỹ1:32 + T (1) · ỹ33:64 + T (4) · x65:96 = x1:32,

ỹ1:32︸︷︷︸
unknown

+ T (1)︸︷︷︸
secret key

· ỹ33:64︸ ︷︷ ︸
known

= x1:32 + T (4) · x65:96︸ ︷︷ ︸
known

.

(17)

The secret submatrix is multiplied by a known vector ỹ33:64
computed using Equation 15. The right side of the Equation 17
is used for row index determination.

E. Extraction of the central map F

There are two possible approaches to extraction of the cen-
tral map F with knowledge of S and T . The first one is
extracting the central map F by eliminating T and S maps
from the public key P . The second approach find the central



map F via known Rainbow inputs and outputs, using a system
of linear equations. In this case, knowledge of the public key is
not needed. Enough input and output data should be obtained
while attacking the S and T maps.

IV. EXPERIMENTAL EVALUATION

We evaluate the proposed attack on a ChipWhisperer-Lite
platform with a 32-bit STM32F303 microcontroller based on
ARM Cortex-M4 core as a target. ChipWhisperer-Lite features
an integrated 10-bit ADC with 105MS/s sampling rate and
uses a synchronous sampling technique [10] for measurements
of the target power consumption. We are attacking the imple-
mentation proposed in the NIST competition second round,
with random data generated by a controlling PC.

For side-channel attack evaluation, we use the success
rate [11], i.e., the expected probability of attack successfully
distinguishing the correct subkey. The presented results are
based on 33 independent experiments and further averaged
over 32 random subkey elements/rows.

Attack I targets a single 4-bit subkey and is directly applica-
ble to non-zero subkeys only as described in subsection III-C.
Its success rate is therefore based on attacking non-zero
subkeys only. Attack II is then used to distinguish between
up to 32 matrix rows revealed by Attack I. Subkeys which
Attacks I and II fail to reveal are then discovered using Attack
III, which makes more precise predictions of a processed 32-
bit word using previously discovered subkeys.

Attacks I and II (both targeting 4-bit value) have a success
rate of 0.75/0.95 using approx. 280/475 power traces. Attack
III has a success rate of 0.75/0.95 with one, three, or seven
other known subkeys (i.e., targeting eight, 16, or 32 bits) using
approx. 150/240, 90/140, or 40/70 power traces, respectively.

Attack III exhibits a better success rate than Attacks I and II,
which is expected thanks to better signal-to-noise ratio given
more precise power predictions.

V. MULTIPLICATIVE MASKING COUNTERMEASURE

A simple countermeasure masking the matrix-vector multi-
plication is proposed in [8]. The input value y is randomized
via multiplication by a scalar mask m ∈ F. The correct
output can then be obtained by multiplying the result with
mask inversion: m−1 · S−1(m · y) = S−1(y) = x̃. Using this
approach, internal values are masked and unmasked two times
and during computation of the central map F , intermediate
values are not masked at all.

The discussed reference implementation uses central map F
with zero linear and absolute coefficients. Therefore, a sin-
gle mask may be used throughout the whole signature pro-
cess. After the initial hashing, the vector y is multiplied
by a squared mask m2. The output is then unmasked by
multiplying it with the inversion of the mask m−1:

x = m−1 · T−1
(
F−1

(
S−1

(
m2 · y

)))
. (18)

The linear maps are homogeneous of degree one and
the polynomials f (k), k ∈ {v1 +1, . . . , n}, in the central map
F are homogeneous of degree two. Assuming more general

polynomials for now, the behavior of the masked input x in
the quadratic part can be described by

f (k)(m · x) =
∑

i,j∈{1,...,n}

c
(k)
i,j · (m · xi) · (m · xj) =

= m2
∑

i,j∈{1,...,n}

c
(k)
i,j · xi · xj = m2 · yk−v1 ,

(19)

and therefore m−1 ·(f (k))−1(m2 ·yk−v1) = m−1 ·(m ·x) = x.

VI. CONCLUSION

In this paper, we presented a side-channel attack on the
Rainbow digital signature, NIST’s third round candidate for
post-quantum standard. We analyzed the 32-bit reference im-
plementation and proposed three combined Correlation Power
Analysis attacks allowing extraction of a full secret key. We
evaluated the proposed attack on a 32-bit microcontroller with
ARM Cortex-M4 core and successfully extracted the secret
key. Finally, we proposed an extension of a known masking
scheme, that allows randomization of intermediate values used
in the signing process, including the non-linear part, with no
significant time or memory overhead.
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