
Influence of Synthesis Parameters on Vulnerability
to Side-Channel Attacks

Tomáš Balihar
Faculty of Information Technology

Czech Technical University in Prague
Prague, Czech Republic

balihto1@fit.cvut.cz
IEEE number: 97101036

Martin Novotný
Faculty of Information Technology

Czech Technical University in Prague
Prague, Czech Republic

novotnym@fit.cvut.cz

Abstract—Every cryptographic design has to be secure to
fulfil its function properly. As side-channel attacks are becoming
easier and easier to perform, designers of secure circuits must
pay attention to implementing various countermeasures against
these attacks. However, in some cases, their hard work can
be thwarted if automatic optimizations invalidate the defences.
This work explores the effect of synthesis parameters settings
on the vulnerability of the cryptographic designs implemented in
FPGAs to side-channel attacks. It focuses on the implementation
of Advanced Encryption Standard (AES) with multiple counter-
measures against attacks and evaluates the effect of parameters
settings on security using Test Vector Leakage Assessment based
on Welch’s t-test.

Index Terms—side-channel attacks, cryptography, circuit syn-
thesis, field programmable gate arrays, Analysis of variance

I. INTRODUCTION

Security critical designs are more common than ever. Many
applications are dependent on their ability to prevent a potential
attacker from interfering with their task. In many cases, the
main focus is put on the security of critical data. Many different
ciphers are widely used to encrypt any data, which could
be abused by a potential attacker. As encrypting is time and
memory consuming, using hardware to accelerate this task is
preferred. Implementing the cipher in FPGA is one option,
which can help in reducing the time needed and still keeping
relatively high flexibility.

There are many different ways an attack on a critical ap-
plication can be mounted. Some of the most dangerous ones
currently are side-channel attacks. These attacks are focused on
the implementation of an encryption algorithm rather than the
algorithm itself. Because of this, designers must create not only
a functional implementation but at the same time, a secure one.
We can defend from these attacks by using various techniques,
that try to hide activity by masking [1] [2] the data they are
working on or hiding [3] the data from the attacker in many
ways. Countermeasures shall be applied to both software and
hardware implementations of cryptographic applications.

During work on implementing different countermeasures
in FPGA, colleague Jan Brejnı́k [2] has found out that the
vulnerability to side-channel attacks is not affected solely by
the countermeasures used, but also significantly by the configu-
ration of synthesis parameters. Synthesis is a batch of processes
that translate RTL description of a design to a configuration of

the FPGA. This complex flow uses many different tools, which
can be customized using various parameters, to implement the
desired design on board. Changes in these parameters settings
can have various consequences on the designs implementation
properties, which includes its security. This work expands on
Brejnı́k’s work and explores the effects of different parameter
settings on vulnerability to side-channel attacks.

To evaluate how vulnerable the implemented design is, we
utilize Test Vector Leakage Assessment based on Welch’s t-
test [4], in which the power consumption of implemented
design is measured during encryption of chosen constant or
random data. From these power traces, two sets are created,
one containing power traces when constant data were encrypted
and the other containing power traces when random data were
encrypted. These two sets are then compared using Welch’s
t-test, and its output is used to estimate vulnerability of the
measured design to side-channel attack.

The rest of the paper is organized as follows: In Section II
the terminology and background knowledge used in this paper
is described. In Section III we describe the experiment, which
was carried out and the measurement setup used. In Section
IV we present and analyse the obtained results. Section VI
concludes and summarizes this paper.

Research presented in this paper was made during master
studies of the author [5].

II. PRELIMINARIES

Here we present the background knowledge needed for fur-
ther reading. Side-Channel attacks and a few countermeasures
against them are presented, together with the metric used to
evaluate leakage. For this work, Advanced Encryption Standard
(AES) [6] was chosen as the benchmark for our measurements.

A. Side-Channel Attacks

A side-channel attack is a type of attack, that exploits leaking
information from the device, which is caused by an imperfect
implementation or properties of the physical device used. Power
Analysis Attacks utilize the fact that during any task, done
on a device, the power consumption of this device is directly
dependent on the data, that is processed. To perform this kind
of attack, the attacker must have physical access to the device
to monitor the power consumption.



B. Countermeasures

To lower the vulnerability of the design to power analysis at-
tacks, implementation of countermeasures is a must. In [1] and
[2], authors present various countermeasures utilizing dynamic
reconfiguration of FPGA to achieve side-channel protection.
These countermeasures include S-box decomposition, Boolean
Masking and Register Precharge. All of these countermeasures
are applied to AES cipher.

C. Welch’s t-test

To assess how much of the information leaks from the imple-
mentation of a cipher, a Leakage Assessment Methodology is
needed, in this case, Non-Specific Welch’s t-test. This statistical
analysis tool is used to compare two sets of data and evaluate,
whatever they are identical or more precisely, tests the null
hypothesis that the sets have the same means [4].

III. EXPERIMENT DESCRIPTION

Most countermeasures against side-channel attacks are
highly dependent on their implementation in the cryptographic
design. Making changes on the register-transfer level could pose
a significant threat to the security of the design even if the
changes do not alter the primary function of the implemented
cipher. This type of changes is frequently used while making
optimizations.

Faster and smaller designs are preferable in most appli-
cations, so optimizations are always welcome. While using
automated tools for this task is easy, fast and seamless, it is
not always the safest option. Some optimization techniques
used in these tools are moving parts of the integrated circuit to
improve its parameters, but these changes could be dangerous
for implemented countermeasures and at the same time the
security of the whole design.

For the purpose of this work, the parameters that we tested
are all from ISE Design Suite by Xilinx [7], which is a software
tool for working with Xilinx programmable devices. The tool
allows to synthesise, implement, analyse and simulate designs
for FPGAs by Xilinx. There are several consecutive steps
(Synthesis - Translate - Map - Place & Route - Bitstream
Generation) in the translation of the RTL description into the
configuration of the FPGA. Each of these steps is controlled
by a set of parameters that may influence the result. Testing
all combinations of parameters is far beyond our capabilities
and resources; therefore, we focused on parameters that seemed
most likely to have some impact on the placement of crucial
parts of the design.

A. Chosen Parameters

As stated earlier in this chapter, the design was synthesised
and implemented in ISE Design Suite by Xilinx. It is multi-
purpose software that can manage implementations of the
design on Xilinx FPGAs and even help with analysis and
simulation of the design.

Choosing parameters to test was done in two ways. Firstly
in [2], the author inspects three parameters, which could pose
a threat to the security of the implementation, namely Keep
Hierarchy, Register Balancing and Allow Logical Optimizations

Across Hierarchy, which are described later in this section. In
his view, these parameters are crucial for the security of his
work and setting them in another configuration than the one
proposed could degrade the security of the implementation to
a lower level. This statement started these test measurements,
and repeating his experiments was the priority for this work.
Secondly, there are a few parameters, which designers can
use when trying to match tight user constraints, mainly the
performance of the implementation. Some of these parameters
add some kind of non-deterministic behaviour to the process of
synthesis, which could make the implementation more vulner-
able. In this work, we study the influence of the Starting Placer
Cost Table parameter. This parameter completely changes the
approach of the Map and Place&Route procedures in a sparsely
documented way, by using different cost tables for each oper-
ation. Therefore, this parameter has a high potential to make
some changes to the design that could make the implementation
less secure to attacks.

1) Keep Hierarchy: The first parameter chosen in [2] is
Keep Hierarchy. This parameter is one of many that control the
synthesis procedure, but it is propagated to other procedures
too, if not set otherwise. It has three available states: Yes,
No and Soft. Setting the parameter to Yes or No will tell the
synthesis if it should preserve the design unit in its hierarchy
or if it can merge the units, to get better optimization criteria.
Setting this to Soft will keep the hierarchy of a specific design
unit during synthesis, but it will not preserve the hierarchy
of the design in other steps of implementation, specifically in
Place&Route.

As a default, this parameter is set to No, so the synthesis
does not have to follow hierarchy and can potentially move
some parts of the design across hierarchy, which could badly
influence the security of the implemented cipher.

2) Register Balancing: The second parameter tested in [2]
is Register Balancing. This parameter decides whether the syn-
thesis can or cannot move registers through combinatorial logic
to allow for evenly distributed path delays between registers.
It can be in four states: Yes, No, Forward and Backward. Yes
allows moving of the registers in any direction, No disables
this functionality and Forward and Backward allows just for
the registers to be moved one way, either forward in the path,
or backward.

The default value of this parameter is No, which showed to
be the best choice for the security of the design.

3) Allow Logical Optimizations Across Hierarchy: The third
and the last parameter from [2] is Allow Logical Optimizations
Across Hierarchy. Unlike previous parameters in the group, this
one does not make changes in synthesis, but rather in Map
process. This parameter has only True and False states, and
it is similar to the Soft setting in Keep hierarchy, as when
set to True, the Keep Hierarchy setting is ignored during the
Map process and optimizations through hierarchies are allowed
again.

The default state for this parameter is False, which keeps
the selected setting of Keep Hierarchy. Setting this to True
can help achieve better timing performance thanks to more
available optimizations. However, at the same time, it can create



a vulnerable spot in the implemented cipher by moving some
security-critical parts of the design.

4) Starting Placer Cost Table: Besides the above three
parameters discussed in [2], we also explored the parameter
Starting Placer Cost Table, that also controls the Map process.
This parameter is different from the previous ones, and unlike
the previous parameters, which alter the process of synthesis
with observable and deterministic changes, this parameter does
the complete opposite. It is not well documented, with just
a few sentences in the official manual, which are not very
helpful in understanding its function. The parameter is not
set for synthesis but Map and Place&Route procedures and
is mainly used when trying to get better performance from one
design. Its value is a number between 1 and 100, where every
setting then uses a different tactic to implement the design on
the chip. The default value of this parameter is 1. Trying all
settings and picking the best performing one is a commonly
used procedure when trying to match tight user constraints on
performance. As stated before, Xilinx does not describe the
effect of these settings and usage of these parameters could be
a risk to vulnerability, which we will test in this work.

B. Experiment Approach

To determine the effect of the parameters on the implemen-
tation of the cipher, we need a way to measure the vulnerability
of implementation statistically. For this purpose, Welch’s t-test
is used, which is described more in-depth in II-C.

Measuring the impact of the parameters on security is done in
two experiment groups. In the first group, the influence of Keep
Hierarchy, Register Balancing and Allow Logical Optimizations
Across Hierarchy is measured, as these parameters can affect
each other. During these measurements, we set the Starting
Placer Cost Table to 1, which is its default value. Both Keep
Hierarchy and Register Balancing were set only to their Yes and
No values as we did not test other possible values. Together
with two available values of Allow Logical Optimizations
Across Hierarchy, this results in 8 possible combinations of
their settings, which we generated and tested all.

In the second group of experiments we solely test the
influence of the Starting Placer Cost Table parameter by varying
its value between 1 and 100, while other three parameters (Keep
Hierarchy, Register Balancing, Allow Logical Optimizations
Across Hierarchy) are set to a combination, that is recom-
mended by the author of the design in [2]. This combination
is:

• Keep Hierarchy: Yes
• Register Balancing: No
• Allow Logical Optimizations Across Hierarchy: False
All implementations, synthesized from the same description

under different sets of parameters, are generated in ISE Design
Suite. In the second group, we then compare them to see if the
design tool generated different implementations or if there are
some duplicates. We then remove the duplicates and test only
unique implementations.

We execute the measurement for every combination of pa-
rameters and save the results in the sets defined earlier. We
then process these results with Welch’s t-test and present them

as a graph of t-values in time. We then compare these graphs
and make a verdict on the vulnerability of these settings from
them. The t-value should not go over 4.5 in a secure circuit, and
getting higher values means the implementation tested could be
vulnerable to side-channel attacks. [4]

Fig. 1: Measurement setup. Cryptographic design is down-
loaded into Sakura-G FPGA Board (2) via XUP USB-JTAG
Programming Cable (3). Host PC (not shown) communicates
with Sakura-G via USB to UART Serial Adaptor (4). Os-
cilloscope PicoScope 6404D (1) collects power traces during
encryptions and sends them to host PC.

C. Measurement Setup

To ensure a fair comparison, we made all measurements with
the same configuration of devices and tools. We can see the
measurements setup and its description in Figure 1.

The central part of the measurement chain is the Sakura-
G board, which is connected to a PC via the serial link
for communication, utilizing the USB to UART adapter. The
PicoScope 6404D is connected to the PC by a USB cable
for transfer of measured data. It is also connected to the
Sakura-G board in two ports. One port is for the power traces
measurement, for which the board has a dedicated connector
and the second connection to the board is for the trigger
signal. Last part of this setup is the Xilinx XUP USB-JTAG
programmer, that loads all the different implementations to the
FPGA on the board. All of these parts are described more
deeply in this section.

1) Target Platform: We used Sakura-G board [8] to measure
the leakage of every implementation. This board utilizing
Spartan-6 FPGA by Xilinx is explicitly designed for research
and development on hardware security and therefore is useful
for testing side-channel attacks. The board can also make use
of two Spartan-6 FPGAs, where one can serve as the primary
security circuit and the other as a controller to speed up the
measurements. We did not utilize this controller for the mea-
surements made in this work, because in the implementation
of the cipher from [2], the author designed it to communicate
directly with the measuring computer and we did not want to
alter the original code. The Sakura-G board has a direct port
to measure the power consumption of the primary processing
FPGA.



2) Oscilloscope: For the measuring part of this task, we used
PicoScope 6404D [9] oscilloscope by Pico Technology.

3) SICAK Toolkit: To control all experiments, to run the
statistical analysis on acquired results, and to visualise the
results, we used SICAK toolkit [10]. SICAK is a software
toolkit containing different utilities developed for side-channel
analysis. It is a powerful command-line tool, that is actively
developed and supported. It consists of many smaller utilities,
but for the use in this work, we need just a few of them, more
precisely the meas utility, the stan utility and the visu utility.

First automated part consists of doing the measurements,
where we prepare all the bitstreams in folders, that are auto-
matically programmed onto the board, after which the we use
the meas (measurements) utility to do the encryptions on the
board and save the traces of power consumption during these
encryptions.

The second part of the automated process is the processing
of measured data from the first part using the stan (statistical
analysis) utility and after finalizing the results, we use the
visu (visualize) utility to get the graphs of t-values for every
measured configuration.

IV. MEASUREMENT RESULTS AND DISCUSSION

In this section, we present and analyse the measurement
results, after which we make a discussion about their cause. We
present the results as tables of t-values for each configuration
of parameters. These values are then analysed to see if there is
any leakage, which could make the implementation vulnerable
to side-channel attacks using Power Analysis.

As stated earlier, measurement results are split into two
groups by parameters that are modified. We used Welch’s t-
test [4] to evaluate the security of the tested circuit. As stated
in [4], the t-value should not exceed 4.5 in its absolute value,
because higher values indicate leakage that may be exploited
by an attacker.

Figure 2 displays an example of power consumption during
one run of encryption with the chosen implementation of AES.
There are vertical red lines, highlighting each round of AES.

Fig. 2: Single trace of power consumption during AES encryp-
tion with highlighted rounds

Fig. 3: Graph of t-value for KH=Yes, RB=Yes, ALOAH=False

Figure 3 shows plot of t-values for Keep Hierarchy = Yes,
Register Balancing = Yes and Allow Logic Optimization Ac-
cross Hierarchy = No. In this case, as well as in some other
cases, the t-value spikes significantly after the end of the
measurement. This phenomenon is addressed closely in Section
IV-C.

A. Keep Hierarchy, Register Balancing and Allow Logical
Optimizations Across Hierarchy

During the first part of the measurements, we examined the
effects of different combinations of parameters Keep Hierarchy
(KH), Register Balancing (RB) and Allow Logical Optimiza-
tions Across Hierarchy (ALOAH).

1) Measurement Results: In Table I, we can see all of
the measurements summarized with the highest t-value during
sole encryption, and the highest t-value during the whole
measurement run, using all eight combinations of parameters
Keep Hierarchy (KH), Register Balancing (RB) and Allow
Logical Optimizations Across Hierarchy (ALOAH). The high-
lighted combination is the recommended one. Note that we
set the parameter Starting Placer Cost Table to 1. For every
combination, we recorded and processed 1 000 000 traces of
encryption runs, which is a statistically significant sample, and
we can make assumptions from it.

Each measurement of 100 000 traces took approximately
three to four hours, which means that measuring the 1 000 000
traces for each of the eight bitstreams took us about 12 days.
However, the real time was longer as there was some processing
overhead and we could not run the measurements all the times.

2) Discussion: Observing the results, we can see that best
combinations are the ones with Keep Hierarchy parameter set
to Yes, which partially confirms the recommendations set by
the author of the cipher implementation. We can also see that
there are high t-values outside of the sole encryption. This is
due to peaks found at the end of the measurements and the
circumstances that lead to this are discussed in Section IV-C.

In Table II, there is a summary of the implementation
reports from ISE Design Suite. Here we can see the effect
of the parameter configuration on the number of registers,
LUTs and slices used, together with the minimal clock period



TABLE I: Summary of measured t-values

KH RB ALOAH
Maximum t-value

During The whole
encryption measurement

No No False 4.74562 12.3205
No No True 5.83171 8.99362
No Yes False 9.23876 9.23876
No Yes True 10.4804 10.4804
Yes No False 3.79937 6.84836
Yes No True 3.34124 23.0041
Yes Yes False 2.25137 23.2088
Yes Yes True 3.83813 8.37266

possible. The Keep Hierarchy (KH) parameter seems to have
the most significant effect on the implementation, followed by
the Register Balancing (RB) parameter. The Allow Logical
Optimizations Across Hierarchy parameter seems to have the
least effect. The recommended configuration of parameters is
highlighted.

TABLE II: Effect of the parameters on the implementation
details

KH RB ALOAH Registers LUTs Slices
Minimum
period (ns)

No No False 5998 8391 2902 21.451
No No True 5998 8391 2902 21.451
No Yes False 6004 8962 3145 19.703
No Yes True 6004 8962 3145 19.703
Yes No False 6127 10124 3364 20.752
Yes No True 6127 9744 3237 24.722
Yes Yes False 6127 10519 3608 20.425
Yes Yes True 6127 10380 3245 17.341

Another thing discovered after analysing these results is that
there were two cases of duplicates in these configurations.
Due to the way the Allow Logical Optimizations Across Hi-
erarchy parameter functions, configurations (KH=No, RB=No,
ALOAH=False) and (KH=No, RB=No, ALOAH=True) are
the same bitstreams, which also applies to configurations
(KH=No, RB=Yes, ALOAH=False) and (KH=No, RB=Yes,
ALOAH=True), that are also duplicates. This is due to the fact
that ALOAH parameter only turns KH parameter to No after
the synthesis is complete. However, because KH is set to No in
these configurations, the ALOAH parameter does not affect the
design. Despite duplicities, we can see that we obtained slightly
different results in Table I. This is caused by slight variations
among measurements, e.g. different random data used in the
Welch’s t-test and also due to different physical conditions
during the measurements.

Comparing our results with the results that the author of
[2] got, we can see some differences. For (KH=No, RB=No,
ALOAH=False) and (KH=No, RB=No, ALOAH=True), his
results are getting high t-value spikes during the first few rounds
and the same applies to (KH=Yes, RB=Yes, ALOAH=False).
All the other parameter configurations got us the same results.
His results were gathered from 300 000 traces for each imple-
mentation and unfortunately, they are not published anywhere,
but the author kindly gave us access to these results.

B. Starting Placer Cost Table

In the second part of the measurements, we examined the
Starting Placer Cost Table (SPCT) parameter. We chose this
parameter as designers often use it to match tight memory or
time constraints of the designed circuit during the Map proce-
dure. Changing this parameter lets the designer create different
implementations from the same design without making any
changes that could change the design drastically.

Starting Placer Cost Table (SPCT) parameter can be set to
values of 1 to 100, but after using all of them and comparing
generated implementations, we found some duplicities. From
the possible 100 configurations, only 46 generated unique
bitstreams. After removing every duplicate and leaving only
the first unique occurrence of every file that was generated
multiple times, the values left were the following:

TABLE III: List of SPCT settings generating unique bitstreams

Unique settings
1 2 4 5 6 7 8 9 10 11 12 17

18 19 22 27 28 29 31 37 39 40 41 47
49 51 53 56 57 58 60 68 69 73 74 77
78 79 86 87 88 91 93 95 96 98

When generating implementations for all values of SPCT
parameter, we set the parameters Keep Hierarchy (KH), Reg-
ister Balancing (RB) and Allow Logical Optimizations Across
Hierarchy (ALOAH) to the values recommended by the creator
of this design [2]. These settings are KH=Yes, RB=No and
ALOAH=False.

1) Measurement Results: For each setting of Starting Placer
Cost Table (SPCT) measured, we recorded 300 000 traces,
as there are more bitstreams to measure. As stated earlier,
measuring 100 000 traces took us about three to four hours,
therefore just the measurements in this experiment approximate
to 20 days. This sample size is still enough to estimate the
vulnerability of the configuration and have significant proof to
support it.

2) Discussion: During the measurements of Starting Placer
Cost Table (SPCT) parameter, the results were very similar
to each other, as should be expected. In Table IV, we can
see a summary of every measurement, with the highest t-value
recorded during sole encryption, and the highest t-value in the
whole measurement.

Similarly to the first experiment, Table IV shows high t-value
outside of the sole encryption. This is caused by peaks at the
end of most measurements for which the probable cause is
addressed in Section IV-C.

From Table IV, we can see that this parameter does not have
a significant effect on the vulnerability of the design in most
cases, but the one case (SPCT=74), could threaten this claim;
however, more measurements are needed, as the peak is not
that significant.

C. Transfer of Non-Masked Data

In many different measurement results, we can find a spike
in t-value at the end of the measurement run. This phenomenon
was also observed and addressed by the author of the chosen
cipher implementation in [2]. Most probably, we can attribute



TABLE IV: Summary of measured t-values

SPCT Encryption All
1 4.66137 4.66137
2 3.02121 6.40176
4 2.61497 4.18676
5 3.19079 9.13967
6 3.85763 10.0987
7 2.94035 4.47197
8 2.71808 13.2312
9 2.79295 3.70776
10 2.71645 5.81644
11 3.88973 5.69192
12 3.18508 17.7605
17 4.04652 13.5741
18 3.54947 3.68265
19 3.31398 3.95119
22 2.87762 5.30433
27 3.66442 7.09814
28 2.53476 6.32571
29 2.71008 4.44222
31 3.4037 5.33605
37 2.98636 12.4724
39 3.17341 5.73962
40 3.15729 4.98128
41 3.05212 11.8219

SPCT Encryption All
47 2.72679 6.92341
49 3.68028 5.1538
51 3.11814 5.17906
53 3.14994 6.51683
56 2.82286 4.51883
57 3.65498 11.7555
58 3.21451 5.96552
60 3.28442 5.33132
68 3.53053 5.06532
69 2.4085 4.26307
73 3.2313 9.57199
74 5.50839 7.71146
77 3.26469 4.68116
78 3.13566 5.08574
79 3.36239 9.45607
86 3.46668 9.92921
87 2.93188 4.17628
88 2.90624 5.05841
91 3.86929 5.29514
93 4.33165 5.65837
95 2.0419 6.40732
96 3.56638 8.17365
98 4.01364 7.04754

the cause for these increases in t-value to the fact that each
ciphertext is sent to the measuring computer from the FPGA
board in non-masked format after the encryption is complete.

Sending the unmasked ciphertext means that the FPGA has
to unmask it at some stage after the encryption process. This
is normally done later after the measurement is long complete,
but in some cases, the optimizations in synthesis procedure
can make enough changes in the design that the unmasking of
the ciphertext is processed much sooner. Therefore, the design
unmasks the ciphertext during the measurement, and we can
see the leakage of this ciphertext in the t-value.

The reason that we can see this leakage is due to the way
that Welch’s t-test works. It compares two sets of data, one
random and one constant; once the constant text is unmasked,
the circuit is working with the same data in every measurement
run, where the constant data is used. That makes it easier for the
t-test to differentiate between the sets and therefore, the t-value
rises. This can be removed by sending the masked ciphertext
back to the PC and unmasking it in the PC instead. However,
the implementation used in this experiment could not have been
easily modified to send the masked ciphertext and possibility
to compare the results with the author would have been lost if
we have made any changes.

Because this leakage does not originate from the encryption
phase, but rather from the working with unmasked ciphertext,
we do not have to consider this leak a vulnerability, and we
can mark all of the implementations with this peak as secure.

V. FUTURE WORK

In future, we would like to extend this work with more
different parameters to test and to switch over from ISE Design
Suite, which is no longer being developed, to Vivado Design
Suite, its successor. This switch includes different measuring
board, since Vivado does not support the Spartan-6 FPGA, for
which the original secure design was developed.

Another point we want to examine in the future is to
prove our hypothesis about the peaks that appear after the
encryption is complete. We would like to change the design
so no additional changes are made to the ciphertext after the
encryption, which would show us if the peak is related to the
design.

VI. CONCLUSION

This work explored the effects of different configurations
of the synthesis parameters on vulnerability to side-channel
attacks. We used an implementation of AES cipher utilizing
three countermeasures against side-channel attacks as a bench-
mark. To compare the different implementations with various
parameter settings, we used Test Vector Leakage Assessment
using Welch’s t-test.

We have tested the effect of different combinations of param-
eters Keep Hierarchy, Register Balancing and Allow Logical
Optimizations Across Hierarchy and found out that the Keep
Hierarchy parameter had significant effect on security and
Register Balancing had minor effect in some cases. The Allow
Logical Optimizations parameter seemed to have very little to
no effect on the vulnerability. We also evaluated the impact of
a parameter Starting Placer Cost Table, which proved to have
no significant impact on the vulnerability.

In the measurements, we discovered an anomaly of high
leakage of information at the end of some measurements. We
attributed this to the fact that the used implementation of AES
is sending back the non-masked ciphertext, which has to be
unmasked after the encryption is complete.

REFERENCES

[1] P. Sasdrich, A. Moradi, O. Mischke, and T. Güneysu, “Achieving side-
channel protection with dynamic logic reconfiguration on modern fpgas,”
in 2015 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2015, pp. 130–136.

[2] J. Brejnı́k, “Dynamic logic reconfiguration based side-channel attack
countermeasures in fpga.” Master’s thesis, Czech Technical University
in Prague, 2019.

[3] P. Sasdrich, A. Moradi, and T. Güneysu, “Hiding higher-order side-
channel leakage,” in Cryptographers’ Track at the RSA Conference.
Springer, 2017, pp. 131–146.

[4] T. Schneider and A. Moradi, “Leakage assessment methodology,” Journal
of Cryptographic Engineering, vol. 6, no. 2, pp. 85–99, 2016.

[5] T. Balihar, “Influence of synthesis parameters on vulnerability to side-
channel attacks,” Master’s thesis, Czech Technical University in Prague,
2020.

[6] J. Daemen and V. Rijmen, The design of Rijndael. Springer, 2002, vol. 2.
[7] “Xilinx ISE Design Suite [online],” [cit. 2020-07-27]. [Online]. Available:

https://www.xilinx.com/products/design-tools/ise-design-suite.html
[8] “Sakura-G FPGA board [online],” [cit. 2020-07-27]. [Online]. Available:

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
[9] “Pico Technology [online],” [cit. 2020-07-27]. [Online]. Available:

https://www.picotech.com/
[10] P. Socha, “Software toolkit for side-channel attacks,” Master’s thesis,

Czech Technical University in Prague, 2019.


