
WTFHE: neural-netWork-ready Torus
Fully Homomorphic Encryption

Jakub Klemsa(�)

Czech Technical University in Prague
Prague, Czech Republic

jakub.klemsa@fel.cvut.cz

Martin Novotný
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Abstract—We are currently witnessing two arising
trends, which have a huge potential to threaten our
privacy: the invasive sensors of the Internet of Things
(IoT), and the powerful data mining techniques, in
particular we focus on Neural Networks (NN’s). For
this reason, powerful countermeasures must be called
for service: namely end-to-end encryption. Such an
approach however requires an encryption scheme that
enables processing of the encrypted data – this is
known as the Fully Homomorphic Encryption (FHE).

In this paper, we revisit an FHE scheme named
TFHE, which is suitable for evaluation of NN’s over
encrypted input data, and we suggest to incorporate
a verifiability feature to the evaluation process. Since
there already exist other variants of the original TFHE
scheme—currently only implemented in C++, which
is rigid—we further introduce a library for rapid
prototyping of new concepts related to TFHE. Our
library is implemented in Ruby, which is an inter-
preted language and which goes with an interactive
shell. Hence any new method can be speedily verified
before implemented as a high-performance library.

Index Terms—fully homomorphic encryption, neu-
ral networks, internet of things, rapid prototyping

I. INTRODUCTION

Privacy is a valuable thing, however, much more
than ever before, it is being challenged – in particu-
lar with the rapid growth of the Internet of Things
(IoT). Firstly, more and more IoT sensors are
approaching our vicinity, hence sneakily violating
our privacy. Secondly, current powerful data mining
techniques can exploit literally any available piece
of information, which means that even seemingly
innocent data can lead to serious privacy breaches.

This work was supported by the Grant Agency of CTU in
Prague, grant No. SGS19/109/OHK3/2T/13.

Limiting the information, which is allowed to be
collected by an IoT device, is somewhat tricky:
you need to find an—often impossible—balance be-
tween privacy protection and data usability. Hence
an ultimately better approach is to have the infor-
mation encrypted all the time it has been outside the
device (aka end-to-end encryption). Now the tricky
thing becomes processing of the encrypted data.
This idea was originally suggested back in 1970’s
by Rivest et al. [1] and posed a major cryptographic
challenge (aka the Holy Grail of Cryptography)
until Gentry’s breakthrough in 2009 [2].

The approach, which allows for operations over
encrypted data, is referred to as the Fully Homomor-
phic Encryption (FHE) and it enables to evaluate
any function (represented by a Boolean circuit)
over encrypted input data. Since the Gentry’s paper,
there have emerged several improvements and mo-
difications, including but not limited to theoretical
advances [3], [4] or implementations [5], [6].

On the other hand, in the field of data proces-
sing, Neural Networks (NN’s) are experiencing its
renaissance. In addition, NN’s can be handled by
certain FHE schemes advantageously as Bourse et
al. [7] outlined. They use an adaptation of a scheme
known as TFHE: Fully Homomorphic Encryption
over the Torus introduced by Chillotti et al. in
2016 [8], recently extended in [9]. Not only is
TFHE currently one of the most promising FHE
schemes in general, its internal structure in addition
allows for evaluation of arbitrary function during
the so called bootstrapping phase. Note that this
property is a key to the evaluation of a NN.



Our Contribution

First, we summarize the prerequisities for
prospective evaluation of NN’s over encrypted data
and we revisit the latest approaches. Next, we
outline how common functions can be handled to
deal with current limitations and exploit the maxi-
mum of available resources. We further suggest to
incorporate a verifiability feature to the evaluation
process, for which we express the need for a library
with sufficient space for custom adjustments, im-
provements or modifications. Finally, we introduce
such a library – an implementation of WTFHE in
Ruby. The library aims to serve particularly for
rapid prototyping of any future proposals as well
as TFHE modifications, including but not limited
to NN evaluation.

Paper Outline

In Section II, we define symbols and notation
used in this paper and we provide a brief overview
of TFHE as well as NN’s. Next, we discuss NN
evaluation over encrypted data and its prospective
verifiability in Section III. In Section IV, we intro-
duce our WTFHE Ruby library. We conclude this
paper and outline future directions in Section V.

II. PRELIMINARIES

A. Symbols and Notation

In this paper, we will use the following symbols.

� B the set {0, 1},
� T the real torus R/Z, i.e., the fractional part

of real numbers,
� M(N)[X] the set of polynomials over an

abelian group M modulo XN + 1, i.e.,
M[X]/(XN + 1),

� Mn the set of n-dimensional vectors of ele-
ments from M,

� Mn,m the set of n ×m-dimensional matrices
of elements from M.

Note II.1. When multiplying an element of
M(N)[X] by X , coefficients rotate, while changing
their sign over the “edge”. Indeed, for a ∈ M,
aXN−1 · X ≡ −a (mod XN + 1). We call this
the negacyclic property.

B. TFHE

In this section, we briefly recall a FHE cryp-
tosystem by Chillotti et al. [9] named TFHE, in its
canonical version. TFHE builds upon Learning With
Errors by Regev [10] (LWE) and upon a substantial
improvement of the bootstrapping procedure by
Ducas et al. [11]. TFHE further follows generali-
zations of LWE [4] and Gentry-Sahai-Waters cryp-
tosystem [3] (GSW) in the bootstrapping procedure,
denoted as T(R)LWE and T(R)GSW, respectively.

To estimate the bit-security of an LWE-based
scheme, Albrecht et al. [12] summarized known
results and provided an interactive estimator1.

1) TRLWE: In the context of TRLWE, cipher-
texts are referred to as samples, a definition follows.

Definition 1 (Canonical TRLWE Sample [9]; sim-
plified). Let n ≥ 1 and N , a power of 2, be
two integers, α ≥ 0 a real noise parameter and
k ∈ B(N)[X]n a vector of binary polynomials
modulo XN + 1, which serves as the secret key. A
fresh TRLWE sample of a message µ ∈ T(N)[X] is
a vector (a, b) ∈ T(N)[X]n+1 where b is picked
from a Gaussian distribution around µ + k · a
with scale α and a is either: uniformly random in
T(N)[X]n (random sample), or equal to 0 (trivial
sample). The sample is noiseless if α = 0, and
homogeneous if µ = 0.

The opposite (viewed as decryption) is referred
to as phase function, a definition follows.

Definition 2 (Canonical TRLWE Phase [9]; sim-
plified). Let c = (a, b) ∈ T(N)[X]n+1 be a canon-
ical TRLWE sample and let k ∈ B(N)[X]n be a
TRLWE key. We call ϕk(c) := b− k · a the phase
of the sample c. Let further msg(c) denote the
expectation of ϕk(c).

These definitions unify (T)LWE and
RingLWE [13]. Indeed, for n = 1 and N
large we have RingLWE, for N = 1 and n large
we have LWE (or TLWE for its binary version).

In the following informal lemma, we outline the
additive homomorphic property of TRLWE.

1https://estimate-all-the-lwe-ntru-schemes.github.io/docs/
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Lemma II.1 (Additive Homomorphism; informal).
Let k ∈ N, c1, . . . , ck TRLWE samples under the
same key k and e1, . . . , ek ∈ Z(N)[X]. Let c =∑k

i=1 ei · ci. If the noise is “not too large”, then

msg(c) =

k∑
i=1

ei ·msg(ci). (1)

Note that multiplicative homomorphism is
achieved by a combination with TRGSW samples,
which is beyond the scope of this paper.

2) TFHE Bootstrapping: First, we provide a
(version of) bootstrapping algorithm from [9] ex-
tended by a suggestion by Carpov et al. [14],
which allows to evaluate arbitrary function during
the bootstrapping procedure (namely we follow the
TVF (X) ·Xm option as per [14]).

Algorithm 1 TFHE Bootstrapping
Input: A TLWE sample (a, b) of µ = m/2N , m ∈
Z2N , under key k, and TRGSW samples BKk→k′

of bits of k under key k′ (aka bootstrapping keys).
Output: A TLWE sample of f(m) under key k′,
where f : Z2N → T, f(−N + k) = −f(k), is en-
coded within a test vector TVf ∈ T(N)[X].

1: āi ← b2Naie for i ∈ [1,dim(k)], b̄← b2Nbe
2: ACC← (0, X−b̄ · TVf ) ∈ T(N)[X]n+1

3: for i ∈ [1,dim(k)] do
4: ACC← BKi � (X āi ·ACC−ACC) +ACC

5: return SampleExtract(ACC)

Line 1 rescales and rounds torus values to in-
tegers mod 2N . Line 2 initializes an accumulator
ACC with a trivial sample of X−b̄ ·TVf , where mul-
tiplication by X−b̄ performs a negacyclic rotation
(cf. Note II.1) of TVf . Line 4 further nega-rotates
TVf by kiāi, where ki is TRGSW-encrypted inside
BKi and � : TRGSW×TRLWE → TRLWE is
an operation referred to as the external product.
Note that lines 2–4 are also known as BlindRotate,
since the rotation is hidden due to the encrypted
ki’s. Finally, line 5 extracts and returns a TLWE
sample from ACC, which is a TRLWE sample.

Note that during bootstrapping, the decryption
procedure with encrypted key is performed in-
ternally, hence the result remains encrypted. In-
deed, the test vector gets (blindly) rotated by

X
∑

i kiāi−b̄ = X−ϕk(ā,b̄). As a result, the desired
value appears at the constant term, which is finally
extracted.

C. Neural Networks

For a very brief insight to how neural networks
are evaluated, we consider the simplest scenario. An
artificial neural network is a series of elementary
building blocks referred to as perceptrons organized
in layers, which are evaluated one after each other.
A perceptron P inputs kP values from perceptrons
in the preceding layer (or NN inputs itself) and
outputs single value, possibly to several perceptrons
in the subsequent layer as their respective input (or
NN output itself). A weight w(P )

i is assigned to each
(i-th) input of the perceptron P . These weights, to-
gether with the structure, define the neural network.
The perceptron P evaluates the input values vi as
follows:

evalP (vi)
kP
i=1 = f

( kP∑
i=1

w
(P )
i vi

)
, (2)

where f is called the activation function; cf. Fi-
gure 1. f is a non-linear and usually also an odd
function with bounded image, e.g., tanh or sgn.

v1
v2
...
vk

Σ f output

·w1

·wk

·w2

inputs:

Fig. 1. Perceptron evaluation.

III. WTFHE

In order to evaluate a NN on encrypted data, two
homomorphic operations must be supported, cf. (2):

1) homomorphic addition (which clearly enables
scalar multiplication by a known integer), and

2) homomorphic evaluation of the (non-linear)
activation function.

A. Addition

Addition, including scalar multiplication by
a known integer via double-and-add algorithm, is
cheap in TFHE—technically represented only by
vector addition—and also it does not impose much



noise overhead to the ciphertext. Note that for this
reason, we will only consider NN’s with integer
weights w(P )

i . In addition, let us emphasize that all
operations are performed on a discretized and finite
domain, hence the NN parameters must take this
limitation into account in advance, i.e., during the
NN creation process.

B. Evaluation of the Activation Function

The main focus now remains on the activation
function, which can be incorporated within the
bootstrapping procedure as it has been suggested by
Carpov et al. [14]. As we already outlined within
the bootstrapping algorithm, the evaluated function
f : Z2N → T must satisfy (a modified result of
Carpov et al.)

f(−N +m) = −f(m) (3)

for m ∈ [0, N). This follows from the negacyclic
property of the test vector, which encodes the func-
tion and which is technically a polynomial mod
XN +1. N.b., the property (3) cannot be completely
avoided, e.g., by rescaling at line 1 of Algorithm 1
from āi ← b2Naie to āi ← bNaie – in such a
case, the result would have an unpredictable sign.

However, if we insist on an activation function
without the property (3), e.g., f = tanh, we
must prevent the input values from reaching the
negacyclic property by an appropriate choice of N ;
cf. Figure 2. We discuss choice of N later in detail.
However, for TFHE plaintext resolution it means
that 2N values must be distinguishable, represented
by torus values 1

2NZ/Z ⊂ T.

−N N

f ≈ tanh

−N/2 N/2

negacyclic f

unused

0

Fig. 2. Usage of a non-negacyclic activation function (tanh) on
a limited interval.

C. Example Discretization of Hyperbolic Tangent

Let us choose hyperbolic tangent, tanh: R →
(−1, 1), as an example activation function. We show
how discretization narrows down the unused inter-
val. We choose a precision parameter d ∈ N and
we rescale and discretize tanh to integers, we use
fd(x) = bd · tanh(x/d)e. I.e., fd : Z2N → [−d, d]
and fd(1) = 1. Note that fd becomes constant
starting

xd =
⌈
tanh−1(1− 1/2d) · d

⌉
. (4)

It follows that after discretization, the usable in-
terval can be extended by constant values from
previously unused interval, i.e., as far as N − xd;
cf. Figure 3, where we have chosen d = 8.

N

f ≈ tanh

N/2 unusedconst0

d = 8

x8 = 14

Fig. 3. Extending the usable interval by constant values (n.b.,
only every second value is displayed).

Let us now discuss how N must be chosen
in order to prevent an overflow. Note that during
NN evaluation, the largest value may occur after
(weighted) summation, cf. Figure 1 and (2). Let us
denote

W = max
P∈P

[ kP∑
i=1

∣∣w(P )
i

∣∣], (5)

where P is the set of all perceptrons of given NN.
Then, since inputs vi in (2) are limited by the
(bounded) image of f , we need d ·W ≤ N − xd,
i.e.,

N ≥ xd + d ·W. (6)

Note that the size xd of the unused interval only
depends on d and grows ≈ 1/2(d log d). Indeed,

lim
d→∞

⌈
tanh−1(1− 1/2d) · d

⌉
d log d

=
1

2
. (7)

This approach allows us to make use of most of
the interval, even without a negacyclic function.



D. Motivation: Verifiable NN Evaluation

In our recent research, we introduced a frame-
work named the VERAGREG Framework [15],
which extends Additively Homomorphic Encryp-
tion (AHE) by a verification feature. This feature
aims to guarantee that the computing party indeed
computes what it claims to. In case of addition,
this basically means an index list of values, which
are (supposed to be) involved in the encrypted
aggregate sum. Our current aim is to implement the
verification feature to homomorphic evaluation of
NN’s.

There exists a scheme by Fiore et al. [16], which
allows for arbitrary verifiable computations over
encrypted data, i.e., a verifiable FHE scheme. Note
that their scheme is currently tailored for evalu-
ation of multiple kinds of polynomials, i.e., not
for a generic (and bounded) activation function; cf.
Table 1 in their paper. Interestingly, for some types
of polynomials, both input and function privacy can
be achieved. Another analogous problem with poly-
nomials is addressed in a recent paper by Gajera et
al. [17].

Our goal is a scheme, which would allow for
verifiable evaluation of a NN over encrypted data
without disclosure of the actual NN, but rather in
a zero-knowledge manner. Such an approach aims
to increase credibility of the whole system. As the
first step, we decided to implement a library with
(W)TFHE operations. The library aims to help us,
as well as others, with rapid prototyping of our/their
novel ideas related to, or enhancements of TFHE.

IV. LIBRARY FOR RAPID PROTOTYPING

Since there exist several variants and modifica-
tions of the original LWE (e.g., [13], [4], [18], [19]),
including those of TFHE (e.g., [20], [14]), it has
shown to be convenient to have an implementation,
which would be easy to modify as well as would
it allow for interactivity. Currently, TFHE is only
available as a C++ library [21], which is much more
rigid, compared to a library written in an interpreted
language. For this reason, we decided to write the
library in Ruby, named WTFHE and released under
MIT license at [22].

Ruby is shipped with an interactive shell (e.g.,
irb), hence it becomes very easy to create own
instances of all underlying objects ranging from
the torus elements and polynomials over the torus
to T(R)LWE and T(R)GSW ciphers. Note that it
is also possible to modify the methods on-the-
fly, hence one can easily verify own ideas of new
enhancements or features.

A. Code Structure

Our library consists of several classes, each de-
fined in a corresponding file and supported by
a comprehensive documentation. In Figure 4, we
outline their dependencies.

WTFHE................Global cipher interface
TRGSW....TRGSW cipher (for bootstrapping)

TRLWE....................TRLWE cipher
TrlweSample........TRLWE sample

PolyN...Polynomials modXN + 1
Torus..........Torus elements

TorusInt......int repres.
TorusFloat...float rep.

TRLWE
TLWE................Actual TFHE cipher

(dtto)
Noise...........Module for noise operations

Fig. 4. Dependencies of implemented objects.

V. CONCLUSIONS & FUTURE DIRECTIONS

We revisited the TFHE scheme and discussed
its usage for evaluation of NN’s over encrypted
data. In particular, we focused on effective resource
utilization under the limitations that follow from
TFHE construction. On top of that, we suggested to
incorporate a verifiability feature to the evaluation
process in order to increase credibility of the whole
system.

In order to simplify the development of new
modifications or enhancements to the TFHE ci-
pher with particular respect to NN evaluation, we
implemented a scalable, modifiable and interactive
Ruby library named WTFHE. Thanks to its design,
our library enables to decrease the idea-to-proof-of-
concept time considerably.



As per our future plans, we aim to implement the
variants suggested by Carpov et al. [14] and evalu-
ate them with respect to prospective involvement in
NN computation, particularly from the performance
point of view. Finally, our ultimate goal is to
introduce the verification feature to NN evaluation,
similarly to our VERAGREG Framework, which
does that only for AHE.
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[17] H. Gajera, M. Giraud, D. Gérault, M. L. Das, and P. Lafour-
cade, “Verifiable and private oblivious polynomial evalu-
ation,” in IFIP International Conference on Information
Security Theory and Practice. Springer, 2019, pp. 49–65.

[18] J. H. Cheon and D. Stehlé, “Fully homomophic encryption
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