
6th Mediterranean Conference on Embedded Computing MECO’2017, Bar, Montenegro

Emulator of Contactless Smart Cards in FPGA

Stanislav Jeřábek, Jiří Buček, Jan Schmidt and Martin Novotný

Faculty of Information Technology

Czech Technical University in Prague

Czech Republic, Prague

{jerabst1, bucekj, Schmidt, novotnym}@fit.cvut.cz

Abstract—This paper describes implementation of contactless

smart card emulator compliant with ISO/IEC 14443 in Field

Programmable Gate Array (FPGA). Systems using contactless

smart cards are widely used and some of these systems are not

secured properly. For example in many such systems smart card

Unique Identifier (UID) is used as the only one authentication

mean. As the UID is not encrypted and is read from the card in

plain, it is easy to make a copy of the smart card and use the clone

as the original card. In this work we describe emulator of a smart

card implemented in FPGA which is able to spoof some genuine

smart card. Emulator described in this work emulates protocol

described in ISO/IEC 14443 standard, which in detail describes all

aspects of RFID smart cards (from physical attributes of both –

cards and readers – to communication by digital signals). The

emulator is able to come through the whole card selection process

and to spoof the real smart card with given UID. Moreover

emulator can be selected also for higher application layer protocol

communication. If we know the proprietary application layer

protocol, emulator is able to spoof communication on this protocol

with data recorded in it. This functionality was successfully tested

on systems used at Czech Technical University in Prague, where

the weak implementation of UID as the only one authentication

mean without any proprietary protocol is used. Emulator is

responding faster than most of other existing smart card

emulators thanks to high efficient implementation in hardware.

Keywords-FPGA; emulation; contactless Smart Card;

ISO/IEC 14443

I. INTRODUCTION

Smart cards are widely used in a lot of different systems.
Smart cards themselves usually offer some security thanks to
internal data blocks and usage of different ciphers during
communication on higher protocol layers. However, there are
some systems, where unsecure implementation of smart card
technology is used (for example systems without any other
authentication mean than UID of a smart card). The UID is
therefore public and sent as plaintext. Topic of smart card
security is well researched and several different weaknesses of
smart cards security have been discovered. There are also some
devices, which are able to emulate smart cards.

Nevertheless, the popularity of smart cards is still rising and
the contactless smart cards are still more favorite in comparison
with the other smart cards. The most well-known use of smart
cards are credit and debit cards for banking and Subscriber

Identity Module (SIM) cards in telecommunications. Smart
cards can be also used in a lot of proprietary systems in many
ways, where contactless smart cards are used more than other
smart cards [1].

Smart cards can also be used in a lot of commercial
applications such as banking applications, payments of parking
and traffic fares and a lot of others [2].

II. PREVIOUS WORK

There are some existing projects implementing emulator of
contactless smart cards. Particular examples are Proxmark3 [3],
Simple NFC [4] or ChameleonMini [5]. All these projects
support the ISO/IEC 14443 standard [6]. Complexity of these
projects differs but the most important common attribute is that
some microprocessor is used for management of the whole
system.

• Proxmark3 is able to emulate smart card, smart card
reader and also sniff communication of real smart card
and reader. All of these can be done with use of low or
higher frequencies.

• Simple NFC is able to emulate Near Field
Communication (NFC) tags according to parts 1-3 of
ISO/IEC 14443 standard [6].

• ChameleonMini supports also some higher protocol
layers and therefore supports higher functionalities of
several specific smart card types. The device can be also
used for executing of some attacks.

The main contribution of this paper consists in continuing
development of an existing smart card emulator created in
a master thesis [7]. It consists of board Nexys3 with Xilinx
Spartan-6 FPGA [8] and PN532 Breakout board [9] in Virtual
card mode as radio interface. When PN532 Breakout board
works in Virtual card mode as rectifier and uses hysteresis to
make digital signal from surrounding RF field, which is shown
in Fig. 1. It also allows load modulation of RF field as also
shown in Fig. 1. That is used for communication from card to
reader. The emulator was able to spoof any smart card UID
according to part 1-3 of ISO/IEC 14443 standard before any
upgrades. However, emulator was not able to communicate with
application data protocol according to the fourth part of
standard [6]. Now the emulator is still under development to be

6th Mediterranean Conference on Embedded Computing MECO’2017, Bar, Montenegro
able to do so. The biggest benefit of hardware implementation
(better timing and performance) remains retained.

III. EMULATOR DESIGN AND IMPLEMENTATION

We still use board Nexys3 with FPGA Xilinx Spartan-6
family [8] as target platform for the emulator. There is also still
used PN532 Breakout board as radio interface [9]. The new part
of system will be used a microchip for processing of transactions
on higher application layer. So the emulator of smart card itself
remains in FPGA and is supported with another device as radio
interface and a microchip as transaction controller. FPGA and
radio interface processes RF traces, decodes them as lower layer
transactions and after that these transaction data are sent as
higher layer data into microcontroller for other processing.
Usage of microcontroller only for application data processing
and FPGA for all decoding and RF communication offers more

efficient implementation of the smart card emulator. Although
there remain a lot of unused hardware resources in actually used
FPGA (the attribute with the biggest usage is Slices used with
value about 14 %), we are going to use some microcontroller for
application layer data processing. There is a proprietary protocol
in application layer and it would be unconvinient to make
changes in VHDL code everytime this proprietary protocol is
changed. This also gives possibility to other users to implement
their own proprietary protocol in any microcontroller and
connect it with FPGA smart card emulator.

A. Design of Extensions

Microcontroller processing any commands on higher
protocol layer defined by a user is connected via serial protocol.
Originally RS-232 was intended as the serial protocol but its
throughput even with baud rate 115200 bauds/s turned out as
insufficient. Data were being sent to slow for responding so fast
as ISO/IEC 14443 standard allows [6]. SPI was after that chosen
as communication protocol between FPGA and microcontroller.
While the emulator is successfully selected according to the
fourth part of the standard [6], it works in bytemode and sends
received bytes to microcontroller for processing and after that
sends response back to card reader. All these user-defined
protocol commands are absolutely independent of the emulator
itself. Another emulator upgrade consists in another serial (this
time RS-232) protocol extension which provides comfortable
run-time reconfiguration of emulated smart card. It was
necessary to compile new design for configuration change
because the configuration data were part of the VHDL code.

Figure 2. Simplified design of implemented system. Italic written parts (PC, Application Layer, Data Buffer and Microcontroller)

are extensions described in this paper. PC stands for any device used for configuration.

Figure 1. Radio interface (PN532 Breakout board) processing:
Left: RF field(up) and SigOut signal (down) after processing.

Right: Input SigIn signal (up) load modulating RF field (down)

6th Mediterranean Conference on Embedded Computing MECO’2017, Bar, Montenegro
B. Implementation

Simplified design of implementation in FPGA and
connection with some other devices is shown in Fig. 2. Italic
written parts are extensions described in this paper. Some
extensions are brand new parts, but some changes (extensions)
had to be made in existing entities. Part called as PC is any
device used for configuration, not any part of the emulator itself.

There are three different frequencies used when emulator
decodes data form physical layer. The carrier frequency
(13.56 MHz) is used by Radio Frequency (RF) field, which
provides power for smart card and also serves for
communication [6]. Card reader can start transmitting almost
anytime (there is only restriction of start early after previous
communication was finished). There are also two different
frequencies derived from carrier frequency: bitrate and
subcarrier. Both of them have to be synchronous with carrier
frequency. Moreover FPGA has RS-232 interface for run-time
smart card reconfiguration and SPI protocol interface for
communication with microcontroller processing data on
application layer.

For designing connection with microcontroller thus
enhancing the whole design with application data processing,
some decisions about parameters had to be made. First, for
purpose of system, some proprietary application layer protocol
has to be designed. Because of this protocol is proprietary, it
can’t be used for spoofing some genuine smart card unless we
know some information about genuine protocol and also some
data on genuine smart card if they are used for security. One of
these security measurements can be for example serial number
of transaction, which is used as protection against copying some
genuine smart card with credit.

Another crucial decision is about length of data blocks.
There are transmitted some data blocks containing proprietary
data on application layer. According to the standard the data
blocks can be from 16 to 256 bytes long [6]. To send these data
blocks from smart card emulator itself (FPGA) into
microcontroller there have to be some data queues Length of
these queues depends on maximum data block length. For our
emulator we can use rather short data blocks which give us
opportunity to save some hardware resources with minimal
decrease of data throughput. Total throughput is by overhead
coming from more often transactions influenced only a little,
thanks to very efficient hardware implementation of emulator.
When using FPGA with 100 MHz clock source and actual
design can be responses on lower layer (without application
processing by microcontroller, e.g. card selection) transmitted
back to card reader in 40 ns after incoming data are received (4
clock cycles with 9,6 ns critical datapath length). Actual time is
much higher (circa 86 µs) because of requirements of the
standard [6].

C. Tests

Almost all components were verified with behavioral
simulation. Parts of system that implement first three parts of
standard [6] (without proprietary protocol) were then
successfully validated with a smart card reader. It means that

emulator was successfully selected with its UID and
communication was established.

When implementing and testing the emulator according to
ISO/IEC 14443 standard several unexpected issues had to be
solved. All of them were caused by using recommended zero
values by original standard in bits reserved for future use [6].
Since the standard was released, a lot of other standards for
different smart card subsets were released while they are using
some values reserved for future use in the initial standard [10,
11]. There smart card subtypes has different improvements and
protocol additions such as different data block structures or
built-in encryption but they have in common everything in initial
ISO/IEC 14443 standard [6].

IV. IMPLEMENTATION RESULTS

We have successfully implemented contactless smart card
emulator using Nexys3 as emulator platform and PN532
Breakout board as radio interface. Also extension for run-time
reconfiguration of emulated smart card with RS-232 protocol
has been implemented. Now we are working on extension with

a microcontroller for processing proprietary application layer
data protocol.

The design is therefore suitable also for much smaller (count
of slices and physically too) FPGAs. The whole design will be
a little bigger because of extensions. Run-time reconfiguration
possibility will enlarge design with one RS-232 module and
application layer extension will enlarge design with SPI
communication module and also main controller will be a little
bigger because of new smart card internal states according to the
standard. The whole system without microcontroller for
application data processing powered by a power bank is shown
in Fig. 3.

The emulator implements all four parts of ISO/IEC 14443
standard for smart cards type A. Protocol for smart cards of type
B is not implemented [6].

The emulator allows to change on run-time smart card
attributes such as UID (unique identifier), Select
Acknowledgment (SAK) and Answer to Request (ATQA). The
emulator is able to process application layer commands defined

Figure 3. Emulator without microcontroller for application data

processing powered wih a power bank.

6th Mediterranean Conference on Embedded Computing MECO’2017, Bar, Montenegro
by user with connected microcontroller. These commands are
received via RF field by emulator and as byte arrays they are
sent to microcontroller for processing itself. Design supports
block containing 32 bytes of data, which is helpful for saving
hardware resources and still reducing total throughput by
transaction overhead only minimally.

V. CONCLUSION

The emulator is able to spoof any smart card in weak
implemented system by spoofing its UID, SAK and ATQA. The
device also emulates smart card with data blocks communicating
on higher application layer protocol according to the standard. If
we had some information about content of real card and
commands used for communication, we would be able to spoof
card and its data in real system without smart card key or cipher
security.

Smart card configuration is now loaded into emulator
through SPI protocol connection and can be changed on run-
time.

Implementation almost exclusively in hardware (FPGA)
offers lower latency and higher performance in comparison with
software-based emulators. Usage of microcontroller for
application layer data processing has minimal impact.

ACKNOWLEDGMENT

This work was partially supported by the grant GA16-
05179S of the Czech Grant Agency, "Fault Tolerant and Attack-
Resistant Architectures Based on Programmable Devices:
Research of Interplay and Common Features" (2016-2018). This
research has been in part supported by CTU grant
SGS17/213/OHK3/3T/18. I would like to thank to Denis Titov
for his work on this project in his Bachelor thesis.

REFERENCES

[1] Chhabra, T.; Chindaphorn, P. Smart Cards. [online], 2004, Santa Clara
University, Department of Computer Engineering, [Cited 2017-02-02].
Available from: http://www.cse.scu.edu/˜jholliday/COEN150Sp04/
projects/Smart%20Cards.doc

[2] Unknown. Uses of Smart Cards. [online], 1997, Massachusetts Institute of
Technology, [Cited 2017-02-02]. Available from:
http://web.mit.edu/ecom/Spring1997/gr12/2USES.HTM

[3] Westhues, J. A Test Instrument for HF/LF RFID. [online], 2009, [Cited
2017-02-15]. Available from: http://www.cq.cx/proxmark3.pl

[4] Kruse, N. Simple NFC. [online], 2013, [Cited 2017-02-15]. Available
from: http://blog.nonan.net/2013/11/simple-nfc.html

[5] Kasper, T. Chameleon Project. [online], [Cited 2017-02-15]. Available
from: https://github.com/emsec/ChameleonMini/wiki

[6] International Organization for Standardization. ISO/IEC 14443 -
Identfication cards – Contactless integrated circuit cards - Proximity
cards. 2001.

[7] S. Jeřábek, “Emulátor bezkontaktní čipové karty v FPGA,” Diplomová
Práce. Praha: Czech Technical University, Faculty of Information
Technology, 2016.

[8] Digilent. Nexys3 Board Reference Manual. [Revised 2013-04-03], [Cited
2017-03-05]. Available from: https://www.xilinx.com/support/
documentation/university/XUP%20Boards/XUPNexys3/documentation/
Nexys3_rm.pdf

[9] NXP Semiconductors. UM0701-02 - PN532 User Manual. 2007, [Cited
2017-03-05]. Available from: http://cache.nxp.com/documents/
user_manual/141520.pdf?fsrch=1&sr=1&pageNum=1

[10] NXP Semiconductors. AN1303 MIFARE Ultralight as Type 2 Tag.
Version 1.5, [Revised 2012-03-05], [Cited 2017-03-05]. Available from:
http://cache.nxp.com/documents/application_note/AN1303.pdf?fsrch=1
&sr=1&pageNum=1

[11] NXP Semiconductors. AN10833 MIFARE Type Identfication Procedure.
Version 3.6, [Revised 2016-07-11], [Cited 2017-03-05]. Available from:
http://cache.nxp.com/documents/application_note/
AN10833.pdf?fsrch=1&sr=1&pageNum=1

