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Abstract—Fault injection attacks pose a substantial threat
to the security of digital systems, compromising integrity
and exposing vulnerabilities. This article explores fault injec-
tion techniques, specifically voltage glitching, within the context
of Lenstra’s attack, which is an extension of the Bellcore attack,
on RSA-CRT, which has existed for decades. The focus is
on the cryptographic accelerator of the Microchip CEC 1702
microcontroller. The study employs the ChipWhisperer toolkit
to perform fault injection attacks on both software and hard-
ware implementations of RSA-CRT. Results reveal vulnerabilities
in the commercially produced Microchip CEC 1702 microcon-
troller, highlighting potential security risks associated with fault
injection attacks.

Index Terms—Fault-injection analysis, Bellcore attack,
Lenstra’s attack, CEC 1702, ChipWhisperer

I. INTRODUCTION

In the field of cybersecurity, fault injection attacks pose
a significant threat to the integrity of digital systems. This
paper discusses fault injection techniques, with a focus on volt-
age glitching, which targets the vulnerability of the crypto-
graphic accelerator in the CEC 1702 MCU [9]. The CEC 1702
is an ARM Cortex-M4-based microcontroller manufactured
by Microchip that provides a number of hardware-supported
cryptographic functions, such as hardware accelerators for
AES, RSA and ECC, a cryptographic hash engine, a random
number generator, and more. These cryptographic functions
must meet strict requirements for resistance to attacks. To
the best of our knowledge, only the resilience of the AES
accelerator against Correlation Power Analysis (CPA) was
evaluated in [8]; the authors found no vulnerabilities in this
case. In this paper, we focus on the RSA hardware accelerator
and mount a fault-injection attack.

Fault-injection attacks were known already in the 1990’s.
In 1997, the group of researchers from Bellcore showed how
one might exploit the deliberately introduced faults to reveal
secrets if utilizing the Chinese Remainder Theorem (CRT)
to generate RSA signature [5]; Lenstra later improved their
attack. In the same year, Biham and Shamir introduced the
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Differential Fault Analysis. They demonstrated their method
on DES [3]; it was adopted to AES by Dusart et al. [7]. Fault
injection attacks include also the Collision Fault Analysis [4]
or Fault Sensitivity Analysis [10]. They can also be combined
with passive attacks [6], [21].

This paper showcases Lenstra’s attack, which is an exten-
sion of the Bellcore attack [5] on RSA-CRT [20], as a practical
example that demonstrates how deliberately injected faults
can compromise even the security of commercially produced
Microchip CEC 1702 microcontroller. The attacks are carried
out using the ChipWhisperer [12] tools, which are designed
to simplify side-channel attacks.

This paper is structured as follows: In Section II, we discuss
fault injection attacks and we summarize the Bellcore attack
on RSA implementation using the CRT that was later improved
by Lenstra. In Section III, we describe the measurement setup,
and in the next Section IV, we bring the results of our
measurements. In the last Section V, we conclude the paper.

II. FAULT INJECTION ATTACKS

Fault Injection attacks involve the intentional manipulation
of system behavior by introducing controlled faults into system
operations. Such vulnerabilities can be exploited to compro-
mise security mechanisms, gain unauthorized access, or ex-
tract sensitive information. This section delves into one fault
injection technique – voltage glitching – and Lenstra’s attack
on RSA-CRT, which exploits injected faults to obtain the pri-
vate keys of the RSA [20] asymmetric cipher.

A. Voltage glitching

Voltage glitching [2], [22] is a fault injection method where
the chip’s supply voltage is intentionally reduced for a brief
period of time. This deliberate voltage drop results in de-
creased current flow and subsequently slows down the charg-
ing of parasitic capacities, leading to delayed data propagation.
This effect is akin to clock glitching, where data is not fully
prepared by the time the clock reaches its active edge. Unlike
clock glitching, voltage glitching doesn’t necessitate a device
to be externally clocked, eliminating a potential disadvantage.



Fig. 1. Setup for fault injection on CEC 1702 using ChipWhisperer Lite. 1—
CEC 1702 inserted into the UFO board with connected oscilloscope probes,
2—ChipWhisperer Lite, 3—STM32F3 spare Target, 4—USB-SPI CH341
programmer connected to UFO board and a PC via USB, 5—Oscilloscope
Agilent MSO 7104A, 6—PC running the ChipWhisperer environment.

However, voltage glitching can be more challenging to fine-
tune, and there’s a risk of permanent damage to the device if
not executed precisely.

B. Lenstra’s attack on RSA-CRT signing or decryption

The Lenstra’s attack is an extension of a Bellcore attack [5].
It utilizes the fact that RSA signing/decryption using CRT re-
places one exponentiation modulo n with two exponentiations
modulo p and q, where n = p · q is a public modulus and p
and q are secret prime numbers. Using CRT accelerates RSA
signing/decryption by approximately four times.

Introducing an error into the computation when working
with, e.g., prime number p, allows to calculate the second
prime number q as q = gcd((c − m′)e, n), where e is a
public exponent, c is an encrypted message or a message to be
signed (input to the algorithm) and m′ is a decrypted message
or a signature with a fault (faulty output of the algorithm).
Revealing the value of q will break the system, as we get
p as p = n/q and the secret private key d would be then
computed from the public key e by the formula d = e−1

mod ((p− 1) · (q − 1)).

III. MEASUREMENT SETUP

All attacks were conducted using the ChipWhisperer
suite [14]. The attacks were carried out on the CEC 1702
MCU [18] and two versions of RSA-CRT, one implemented
purely in software (SW) and the other utilizing the MCU’s
hardware accelerator (HW). Fine-tuning of the power glitch
generator parameters was necessary, and for this purpose,
the employed program performed only modular reduction,
a crucial component used in RSA-CRT.

A. Hardware and tools used

The toolkit used for this research was the comprehensive
open-source ChipWhisperer suite, designed for side-channel
attack profiling on embedded devices and for assessing their

Fig. 2. Detail of CEC 1702 connection to ChipWhisperer-Lite and USB-
SPI convertor. 1—CEC 1702 inserted to UFO board, 2—UFO Board, 3—
ChipWhisperer Lite connected to UFO Board using 20-wire cable, 4—USB-
SPI CH341 connected to UFO board, 5—50 cm coaxial cable interconnecting
UFO Board power circuit with ChipWhisperer-Lite glitch generator.

resilience against such attacks. Within the scope of this study,
the toolkit was employed to conduct power glitching attacks.

Firstly, we utilized the STM32F3 [19] target MCU. Tuto-
rials for performing fault injection attacks on the STM32F3
were already available, making it a convenient choice during
the preparatory phase. Subsequently, we selected an addi-
tional target, the CEC 1702 [9], ARM Cortex-M4 based,
equipped with a hardware cryptographic accelerator. Impor-
tantly, no prior fault injection attacks had been conducted
on the CEC 1702 using the ChipWhisperer toolkit. Pro-
gramming the CEC 1702 directly into its flash memory was
achieved through a USB-SPI converter [11]. Both targets
were controlled via the ChipWhisperer API, which also man-
aged the synchronization of operations between the MCUs
and the glitch generator.

To mount the attack, we used the following items:

1) ChipWhisperer-Lite Capture Board [16] serving
as a glitch generator,

2) UFO board for module integration [17],
3) NewAE CEC 1702 target module [18] for UFO Board

(referred to as CEC 1702 hereafter),
4) NewAE STM32F3 target module [19] for UFO Board

(referred to as STM32F3 hereafter),
5) 50 cm coaxial cable with SMA-F connectors from

the ChipWhisperer SCAPACK-L1 kit [14] for introduc-
ing glitches into the power supply,

6) USB-SPI converter CH341A [11] for programming
the Flash memory of the CEC 1702 module,

7) Agilent MSO 7104A oscilloscope [1] for monitoring
signal waveforms,

8) Lenovo Legion S7 personal notebook.

All the hardware used is depicted in Figure 1, and detailed
connections for the CEC 1702 and its connection through
the UFO board is shown in Figure 2.



1 // Prepare BUFF8 structures accepted by functions
performing the PKE operations

2 BUFF8 p_buff8_array, c_buff8_array,...;
3 ...
4 // Load RSA key int HW accelator memory
5 rsa_load_key(RSA_BITS, &d_buff8_array, &

n_buff8_array, &e_buff8_array, BIG_ENDIAN);
6 ...
7 while(pke_busy() == 1) asm nop;
8 // Load remaining values needed to perform RSA-CRT
9 rsa_status = rsa_load_crt_params(RSA_BITS, &

dp_buff8_array, &dq_buff8_array, &qi_buff8_array
, BIG_ENDIAN);

10 ...
11 while(pke_busy() == 1) asm nop;
12 // Signal to ChipWhisperer to start glitch generator
13 trigger_high();
14 // Perform decryption
15 rsa_status = rsa_crt_decrypt(RSA_BITS, &

c_buff8_array, BIG_ENDIAN);
16 pke_start(0);
17 ...
18 while(pke_busy() == 1) asm nop;
19 // Signal to ChipWhisperer that decryption finished
20 trigger_low();
21 // Read decprypted messsage
22 bytes_read = pke_read_scm(&plaintext_byte_array[0],

RSA_BYTES, 5, BIG_ENDIAN);

Fig. 3. Simplified implementation of RSA-CRT decryption using HW
accelerator API calls. Decryption is performed on lines 15–18.

A custom implementation of RSA-CRT was created to facil-
itate the transformation of the attack findings from STM32F3
to CEC 1702. This involved creating two versions using
a 1024-bit hardcoded key: one relied solely on a pure soft-
ware implementation without any security safeguards, while
the other leveraged the CEC 1702 hardware accelerator exclu-
sively for cryptography operations. The compilation of the ex-
ecutables was achieved using the MikroC IDE with default
compilator settings, which provided an integrated API for
invoking hardware accelerator operations. Simplified imple-
mentation utilizing HW accelerator API calls is provided in
Figure 3.

1) Voltage glitch generation: As illustrated in Figure 4,
glitches are created using the MOSFET transistor, which is
part of the ChipWhisperer-Lite. The transistor is adequately
oversized to prevent its destruction. To introduce glitches into
the power supply, a coaxial cable with SMA-F connectors
is used; the interconnection is displayed in Figure 2. Opting
for a different cable length could necessitate searching for an
alternative glitch generator configuration in the future.

All glitch generator parameters are described in Figure 5.
The glitch generator parameters’ ranges are as follows:

• The WIDTH parameter within the range of -49.8 to 49.8.
• The OFFSET parameter within the range of -45 to 45.
• The REPEAT parameter within the range of 1 to 232.
• The SHIFT parameter within the range of 0 to 232.
Values of OFFSET and WIDTH can be rational numbers, but

only integer numbers are considered in this article. The in-
troduced glitch is derived from the internal CLK source
in ChipWhisperer-Lite or an external source (see CLKsync

Fig. 4. Simplified glitch scheme with power traces demonstrating voltage
glitch injection.

in Figure 4). The timing of glitch injection is controlled during
attacks by the TRIG signal. For ease of attack, TRIG is
set by the program to an active state when the computation
phase that needs to be influenced is being executed. Glitches
should be injected consecutively for a given number of clock
cycles (REPEAT parameter) instead of introducing one glitch
lasting several clock cycles to achieve sufficient power supply
fluctuations while avoiding possible destruction of the device.

The configuration for the CEC 1702 and ChipWhisperer-
Lite is as follows:

1) CEC 1702 runs at its default setting of 48 MHz.
2) CLKsync, as shown in Figure 4, is set to 12 MHz using

internal MCU’s PWM.
3) ChipWhisperer-Lite multiplies the input CLKsync by

4 to create a 48 MHz clock, allowing for glitch in-
jection timing granularity roughly matching the MCU
frequency.

4) ChipWhisperer-Lite communicates with the MCU via
the SimpleSerial protocol [13], utilizing UART at
38 400 Baud.



Fig. 5. Overview of glitch generator parameters. OFFSET and WIDTH
parameters units are percentages of the generator’s CLK period width.
OFFSET can have negative values, then the offset is calculated as 100 -
OFFSET. Glitches can be injected consecutively for a given number of clock
cycles set by the parameter REPEAT. The parameter tells how many times
a glitch should be introduced in a row. SHIFT parameter corresponds to
ext_offset parameter in ChipWhisperer API and tells how many CLK
cycles should be glitch introduction postponed (shifted).

B. SW implementation of RSA-CRT and voltage glitching

Protection against side-channel attacks can be carried out
at different levels. One can protect, e.g., the whole processor
or just the cryptographic accelerator. To distinguish whether
and at what level the protections are implemented, first, only
a software implementation of a modular reduction used in
RSA-CRT is evaluated. This simple operation takes much less
time than the entire software implementation of RSA-CRT,
and therefore it is possible to easily test many combinations
of glitch generator parameters, which are depicted in Figure 5.
As CEC 1702 is clocked by an internal oscillator and does
not allow an external clock signal, we performed only a volt-
age glitching attack. The glitch parameters were described
in Section III-A1. It is crucial to set the correct number
of glitch repetitions, as they must be repeated consecutively
to induce a sufficient power drop. This is especially important
because, at such a high synchronization frequency, glitches
with a maximum duration of 10.375 ns are negligible.

Glitch injection is tested at various execution times by
specifying a SHIFT in clock cycles from the activation
of the trigger TRIG, as illustrated in Figure 4.

If a glitch is introduced into the power supply in such a way
that it affects not only the values in the regular registers but
also the program counter or peripheral configuration registers,
the device may enter an undefined state, cease communication
with ChipWhisperer, and require a restart. This restart takes
approximately 1 second, significantly slowing down the pro-
cess of finding the correct glitch generator configuration for
successful glitching. Therefore, it is essential to minimize
the number of device restarts and, if necessary, reduce the in-
tensity of glitch injections to avoid such disruptions.

1) Attack on the single operation: To tune the system,
i.e., to find the best combination of glitching parameters (see
Figure 4), we initially focused on introducing the glitches
when the SW implementation of RSA-CRT is calculating

TABLE I
OPERATIONS TIMES – OVERVIEW OF OPERATION TIMES WITH DIFFERENT

IMPLEMENTATIONS.

Operation Bit length Frequency Duration
cp = c mod p SW 256 (128) 48 MHz 67.27 µs
cp = c mod p SW 1024 (512) 48 MHz 916.13 µs

RSA-CRT SW 1024 48 MHz 6.46 s
RSA-CRT HW 1024 96 MHz 3.23 ms

the remainder cp = c mod p (c is the ciphertext or the mes-
sage to be signed). First, the standalone function responsible
for reducing a 256-bit number by a 128-bit prime number
was tested to determine whether introducing glitches could
modify the result. Then, we did the same for a 1024-bit number
reduced by a 512-bit prime.

Focusing only on a part of the calculation and using
a shorter bit length allows for testing a larger range of glitch
generator configurations. This is because a single computation
takes significantly less time than the entire decryption process
in software, as indicated in Table I. To reduce the time spent
on data transfer between the MCU and ChipWhisperer via
UART, the MCU receives only a 1-byte command to initiate
the 128-bit reduction and returns only a 1-byte response
indicating whether the computation was modified (1) or not
(0).

2) Attack on the whole encryption: The RSA-CRT im-
plementation accepts only a 1-byte command to perform
decryption using hardcoded data with a hardcoded key. It
then returns the entire 1024-bit message, which is necessary
to calculate the secret key stored in the MCU if the encryption
is successfully modified.

Since encryption operation takes much longer than doing
the modular reduction itself (see Table I), glitch injection
is performed with generator settings that have proven to be
the most effective in terms of the ratio of successful glitch
injections to device restarts due to errors.

Glitches are introduced when the 1024-bit to 512-bit mod-
ular reduction is performed. However, based on the evaluation
of the attack on the 256-bit operation alone, glitches are only
introduced at certain interval of the operation time to save time
during the attack.

C. RSA-CRT using hardware cryptographic accelerator
and voltage glitching

The code in CEC 1702 was modified accordingly: The soft-
ware implementation of RSA-CRT was replaced with a func-
tion call of the RSA hardware accelerator. Simplified im-
plementation is in Figure 3, and the attack is focused only
on operation rsa_crt_decrypt(). The glitch generator
settings are the same as those for SW implementation, as it
was tested that they modify the computation process in MCU.
The 48 MHz frequency of MCU is kept for synchronization
even though the HW accelerator internally operates with
double 96 MHz frequency.

To verify that there is no correlation between the glitch gen-
erator settings and the values of the RSA key, a glitching attack



TABLE II
OVERVIEW OF PERFORMED GLITCHING ATTACKS. ONLY THE RESULTS OF THE MOST SUCCESSFUL GLITCH GENERATOR SETTING ARE PRESENTED FOR

EACH ATTACK. FOR AN EXPLANATION OF PARAMETERS (W)IDTH, (O)FFSET, (R)EPEAT, AND SHIFT, PLEASE SEE FIGURE 5.

Operation Length Impl. Key MCU Glitch settings Total SHIFT Results (%) Ratio rs(bits) W O R count Success Reset
cp = c mod p 256 SW —- MCU1 48 -44 9 3 930 0.38 0.13 3
RSA-CRT 1024bit 1 024 SW key1 MCU1 46 -41 11 11 212 0.50 0.86 0.58
RSA-CRT 1024bit 1 024 HW key1 MCU1 46 -41 11 75 000 45.69 7.52 6.07
RSA-CRT 1024bit 1 024 HW key2 MCU1 46 -41 11 75 000 39.63 4.37 9.08
RSA-CRT 1024bit 1 024 HW key3 MCU1 46 -41 11 75 000 40.04 6.13 6.53
RSA-CRT 1024bit 1 024 HW key1 MCU1 46 -41 11 75 000 45.69 7.52 6.07
RSA-CRT 1024bit 1 024 HW key1 MCU2 46 -41 11 75 000 41.47 2.79 14.87
RSA-CRT 1024bit 1 024 HW key1 MCU3 46 -41 11 75 000 49.84 3.38 14.73

is repeated for three different encryption keys and the same
glitch generator settings, and the success rate of the attack is
then evaluated.

Glitching was carried out with the same generator settings
on three different CEC 1702 targets to test whether the glitch
response is consistent among the whole CEC 1702 series.

IV. FAULT INJECTION RESULTS

The evaluation was performed on a notebook PC equipped
with an Intel i5-10300H CPU, RAM with a capacity of 16
GB, and SSD with a capacity of 512 GB. ChipWhisperer
environment version 5.5.0 [15] is used. ChipWhisperer-Lite
capture board runs on firmware version 0.30.0.

An overview of the results of all performed attacks is
presented in Table II. One full glitching attack consists of
repeating the glitching on a range of different shifts with
a fixed WIDTH, OFFSET, and REPEAT parameters, denoted
as W, O and R in the Table II. We used the combination of
glitching parameters that proved to provide the best results
(see Section IV-A1 and Table III). Modular reduction attack
was performed on a SHIFT range 0 – 3 929, RSA-CRT in
SW on a SHIFT range 11 166 – 22 377, and RSA-CRT on
a SHIFT range 0 – 74 999, where each SHIFT value in each
range was used once.

Results represent the percentage of successful glitches. We
also present the percentage of device resets, as they are unde-
sired events prolonging the whole attack. Ratio rs represents
a ratio between successful glitches and the number of resets
of the device for one full glitch attack.

A. SW implementation of RSA-CRT and voltage glitching

1) Attack on the single operation: Performing the attack
on a single operation, which is modular reduction, narrows
down the possible values of WIDTH, OFFSET and REPEAT
suitable for further attacks on RSA-CRT. Modular reduction
is less time consuming and therefore more combinations of
these parameters can be tested.

One modular reduction of a 256-bit long number takes 3929
ticks. With one glitch generator configuration, it is necessary
to attempt glitch injections in every individual clock cycle
(SHIFT). The pulse width (value of WIDTH parameter) should
be as large as possible. Only negative OFFSET relative to
the rising edge of clock CLK is tested; a glitch, therefore,

starts before the rising edge occurs (MCUs register operations
begin) and lasts beyond the rising edge. For each pulse width,
there is a maximum limit on the number of pulse repetitions
(REPEAT parameter value) beyond which the device enters
undefined states and does not complete the calculation. Two
areas of generator parameter testing were conducted, with
a granularity of one step (each parameter is incremented by
1):

1) WIDTH = 45, 46, 47, 48; OFFSET = -44, ..., -40;
REPEAT = 10, 11, 12

2) WIDTH = 47, 48, 49; OFFSET = -44, ..., -40; REPEAT
= 7, 8, 9

A total of 105 parameter combinations were tested, and out
of these, 32 combinations resulted in successful glitch injec-
tions, leading to calculation modifications. Parameter combina-
tions with the highest success rates rs = #successful glitches

#resets of device
are listed in Table III. The ratio rs of successful glitches to
the number of device restarts is used as a main criterion for
comparing results, rather than a ratio of successful glitches and
the number of performed glitches. Many device resets indicate
that glitches are too strong and significantly prolong the glitch
parameters test due to the overhead of waiting for timeout and
device restart.

2) Attack on the whole encryption: One RSA-CRT signing
using a 1024bit key takes approx. 6 seconds and modular
reduction to a 512bit number in the algorithm takes 916.13 µs
(43 974 ticks), see Table I (after omitting the overhead with
sending and checking messages in Python). Testing all the sets
of glitch parameters as in Subsection IV-A1 in the entire range
of possible shifts would be very time-consuming. Therefore,
only the most successful settings of the glitch generator were
used from each set, highlighted in Table III.

The range of shifts, where glitches are introduced, was in-
terpolated from the interval of SHIFT parameter with the most
successful glitches of 256bit modular reduction represented in
Fig. 6. The SHIFT range 1 000 – 2 000 (25.4 % and 50.9 %
of maximum value 3 930) was interpolated to the range 11 166
– 22 377 (25.4 % and 50.9 % of maximum value 43 974).

Although only two generator configurations were tested
and the range was limited, the testing of one generator
setting with 11 212 different shifts took approximately 18:48 h.
The results of the glitch attack are presented in Table IV. Both



TABLE III
SINGLE MODULAR REDUCTION ATTACK RESULTS FROM TESTING TWO GROUPS OF GLITCH GENERATOR PARAMETERS DESCRIBED IN SECTION IV-A1.

ONLY THE MOST SUCCESSFUL COMBINATIONS OF PARAMETERS FROM EACH GROUP ARE LISTED. FOR AN EXPLANATION OF PARAMETERS WIDTH,
OFFSET, AND REPEAT, PLEASE SEE FIGURE 5.

WIDTH OFFSET REPEAT Success Reset Normal Ratio rs

46 -41 11 10 43 3 877 0.023
46 -43 12 30 1 528 2 372 0.002
47 -41 10 21 96 3 813 0.022
47 -42 10 28 138 3 764 0.020
48 -44 9 15 5 3 910 3
48 -40 9 14 15 3 901 0.093
48 -43 9 12 15 3 903 0.08

Fig. 6. Distribution of successful attacks depending on the SHIFT of the glitch introduction. Glitch generator parameters used: WIDTH = 46%, OFFSET
= -41%, REPEAT = 11 CLKs, and SHIFT = 0 - 3930 CLKs. Bin size is 100 SHIFTs, where the last bin holds results for SHIFT = 3900 -
3930 CLKs. We highlighted the section SHIFT = 1000 - 2000 CLKs with the largest amount of successful glitch attacks. For a detailed explanation
of parameters WIDTH, OFFSET, REPEAT, and SHIFT, please see Figure 5.

generator configurations led to successful attack and private
key recovery, and we can state that there are no countermea-
sures protecting the processor as a whole.

It was observed that the second generator configuration had
an absolute advantage in terms of successful glitches, but
the first configuration had a better rs coefficient.

B. RSA-CRT in hardware cryptographic accelerator and volt-
age glitching

The glitch generator was configured in the same way as it
was set up for the attack on the SW implementation of RSA-
CRT. The whole signing process takes 154 557 ticks and fault
is injected in the first half of the signing procedure — rounded
to the first 75 000 ticks — assuming that the HW accelerator
does not work with both prime numbers in parallel in every
run. The same hardcoded message to sign and the same key
is used as in attack on SW implementation. The attack was
successful and the results are presented in Table IV.

To verify whether a single generator configuration can break
multiple keys, only the generator configuration with the high-
est rs was used, and attack was performed on three different

keys. The results are summarized in Table II and presented in
more detail in Fig. 7. It can be observed that the individual
absolute frequencies of successful glitch injections follow
a similar trend over time when using bins of width 1000 for
the distribution of glitch injection shifts.

To eliminate the possibility that this is a device-specific
issue, the attack was conducted on a total of three CEC 1702
targets with the same glitch generator configuration and pri-
vate key. The success rate rs of the attack was the highest
on the second device and the total number of successful
glitches was the highest on the third device, as shown in
Table II and in Fig. 8. Therefore, the device itself may
have some influence on the glitch injection results, but not
to the extent that the generator parameters need to be tailored
separately for each device, as the attack was successful on all
devices with total success rate above 40 % on each device.

The patterns of shifts with successful attack follow a similar
trend as observed during testing with different keys in Fig. 7.
Thus, this issue does not appear to be isolated to individual
devices, and with the same attack setup, the MCU used does
not significantly impact the results.



TABLE IV
ATTACK RESULTS ON RSA-CRT IN SW AND HW. IN BOTH ATTACKS, GLITCH SETTINGS WIDTH = 46, OFFSET = -41, AND REPEAT = 11 WAS

PROVEN TO BE MORE RELIABLE. THE RANGE OF PARAMETER SHIFT DIFFERS BASED ON THE IMPLEMENTATION. THE DIFFERENCE IS MORE
SIGNIFICANT IN AN ATTACK ON HW IMPLEMENTATION OF RSA-CRT. FOR AN EXPLANATION OF PARAMETERS WIDTH, OFFSET, AND REPEAT, PLEASE

SEE FIGURE 5.

WIDTH OFFSET REPEAT Success Reset Normal Ratio rs Time
SW

46 -41 11 56 96 11 060 0.58 18:47:40 h
48 -44 9 78 475 10 659 0.16 18:49:42 h

HW
46 -41 11 34 269 5 642 34 977 6.07 08:43:24 h
48 -44 9 47 607 17 528 9 648 2.72 15:27:20 h

Fig. 7. Rate of successful glitches for 3 different keys using the same setting of the glitch generator: WIDTH = 46%, OFFSET = -41%, and REPEAT =
11 CLKs. Glitching performed for 75 000 different SHIFTs for each key. Bin size is 1000 SHIFTs. For a detailed explanation of parameters WIDTH,
OFFSET, REPEAT, and SHIFT, please see Figure 5.

Fig. 8. Rate of successful glitches performed on 3 different MCUs with the same RSA key using the same setting of the glitch generator: WIDTH = 46%,
OFFSET = -41%, and REPEAT = 11 CLKs. Glitching performed for 75 000 different SHIFTs for each MCU. Bin size is 1000 SHIFTs. For a detailed
explanation of parameters WIDTH, OFFSET, REPEAT, and SHIFT, please see Figure 5.



V. CONCLUSION

Fault injection attacks, particularly voltage glitching, have
been demonstrated as powerful tools for compromising
the cryptographic accelerator of Microchip CEC 1702 micro-
controller. Bellcore/Lenstra’s attack [5] on RSA-CRT show-
cased how intentional faults, introduced through voltage glitch-
ing, can jeopardize the security of RSA-based cryptographic
systems. It also showed that even modern microcontrollers
dedicated for cryptographic applications may be vulnerable
to old-school attacks, although countermeasures are known
and simple. Appropriate countermeasures, such as signature
verification, must be then added by firmware developers.

The ChipWhisperer suite proved invaluable in executing
precise fault injection attacks on both software and hard-
ware implementations of RSA-CRT. Our findings underscore
the need for enhanced security measures to prevent against
fault injection attacks, especially in microcontroller-based
cryptographic systems.

In conclusion, this study emphasizes the efficacy of voltage
glitching as a formidable technique in the arsenal of fault
injection attacks. Ongoing advancements in cybersecurity must
address and mitigate these vulnerabilities to ensure the re-
silience of digital systems against emerging threats.
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