
Impact of Compiler Optimization Flags on
Side-Channel Information Leakage of SipHash

algorithm
Matúš Olekšák, Vojtěch Miškovský

Department of Digital Design
Faculty of Information Technology
CTU in Prague, Czech Republic
{oleksmat,miskovoj}@fit.cvut.cz

Abstract—This work presents an experimental evaluation
of influence of compiler optimization flags on side-channel
information leakage. SipHash was used as a reference algorithm
an ARX-based pseudorandom function optimized for short inputs.
ChipWhisperer CW308 with various targets was used for the
evaluation using guessing entropy of CPA and Welch’s t-test. The
main contribution of this paper is analysis of impact of each flag
and its suitability for implementations minimizing side-channel
leakage.

Index Terms—compiler, GCC, SipHash, ARX, side-channel,
ChipWhisperer

I. INTRODUCTION

Side-channel attacks are one of the most serious threats
to the security of embedded devices as they can break
cryptographically secure algorithms. These attacks exploit the
fact that the physical properties of the operating cryptography
device depend on the data being processed. Side channels
include power consumption [8], electromagnetic radiation [4],
and even sound [6]. This paper focuses on power consumption.

The leakage of sensitive information in the side channel is
influenced by the processor, architecture, machine code and
the environment in which the algorithm is executed. However,
compiler optimizations has a significant impact on the output
of the machine code, resulting in lateral channel leakage. To
find out how much difference it makes, tests should be carried
out on several architectures commonly used for embedded
development.

SipHash [2] was used as the reference algorithm for this
paper. It is an ARX-based pseudorandom function, and there
was a successful CPA attack on it [10], which was used for
comparison between different optimizations in this paper. This
algorithm became of interest as it is used in modern automobile
platforms.

II. BACKGROUND

Optimization flag [5] is compiler parameter, which influence
performance and/or code size at the expense of compilation time

This research has been supported by the grant VJ02010010 of the Ministry of
the Interior of the Czech Republic, “Tools for AI-enhanced Security Verification
of Cryptographic Devices” in the program Impakt1 (2022-2025)

and possibly the ability to debug the program. The difference
between the used instructions and the order of the binary code
affects the leakage of the side channel. The main contribution
of this work is the evaluation of how different optimization
flags affect the leakage of the side channel.

There are optimization flags designed for debugging pur-
poses, such as -Og or -O0, but they are not used in production,
therefore they are omitted in this work. Some are used to reduce
binary size (-Os and -Oz) and most embedded applications
are assumed to use -Os. The remaining optimization flags (-
O1, -O2, -O3 and -Ofast) are used to improve performance.
However, -Ofast disregards strict standards compliance, and
is therefore not intended to be used in production, but it was
measured for its completeness.

Optimized binary code affects many aspects, e.g., better
usage of registers and reduced data transport over the bus.
However, it is not the case, the more optimized binary, the
less it leaks sensitive information. But there has been no work
to consider compiler optimization flags as a source of side-
channel leakage or as a countermeasure. As a result, it was
decided to measure how optimizations affect the side-channel
leakage.

A. SipHash

SipHash is an ARX-based pseudorandom function, which
can be used to generate 64-bit MACs. There are four state
variables called v0-v3, the default value of which is ”somepseu-
dorandomly generatedbytes” in ASCII. However, other initial
values can be used as long as v0 and v1 are different from v2
and v3. To make it clear, in this text, the subscript in the name
of the variable represents the round number and represents the
value of the variable at the beginning of the selected round,
variable without subscript represents the initial value.



Fig. 1: SipHash Diagram [2].

The 128-bit key is half-transformed to two 64-bit values of k0
and k1. Before the first round of transformation, v01 = v0⊕k0,
v11 = v1 ⊕ k1, v21 = v2 ⊕ k0, v31 = v3 ⊕ k1 ⊕ m0, m0
represents the first 64-bit text. The default number of rounds
is two per 64-bit plain text and four final rounds.

Fig. 2: SipHash Round Diagram [2].

B. CPA Attack

In 2004, Brier et al. [3] introduced the correlation power
analysis (CPA), which is a non-profiled side-channel attack.
At the beginning of the attack, the power consumption is
measured. After this physical prerequisite, all other steps are
purely computational. The leakage function must be selected
according to the attacked algorithm and its implementation.
Secret information (usually the encryption key) must be divided
into small parts (e.g. bytes) in order to make its enumeration
calculations feasible (e.g. 256 possible key candidates for one
byte). Then, using the chosen leakage function, the power
consumption of each key candidate is estimated. In the final
step, the correlation between the measured and estimated power
consumption is calculated. The most correlating key candidate
is considered the correct key.

There is a CPA attack [10] on SipHash, which is used as
a base for lightened attack used in this paper. In comparison
with the originally proposed attack, only the first part of the
attack was used in order to retrieve the fifth byte of k1 in this
work. This approach is sufficient because it only visualizes
the difference between leakage of the side channel of different
optimizations. More information on the attack consists of the
intermediate value fk1(m0) = v3 ⊕ k1 ⊕ m0. As a leakage
function, −HW (fk1(m0)) is used where HW (x) is Hamming
Weight of x. The Pearson correlation between the estimated
power consumption by leakage function and the measured
power traces is used to distinguish the best key candidate.

III. RELATED WORK

To the best of our knowledge, there is no publication
on compiler optimization flags and side-channel leakage
measurement. The most related publications deal with the
security vulnerabilities that are generated by a compiler [7]
and the detection of specific instructions. There is research
paper on the estimation of electromagnetic radiation by the
execution of a particular sequence of instructions [14]. Another
publication [11] refers to methods for code generators (not
compilers), which preserve first-order security by taking into
account specific CPU leakage characteristics. And there is also
a publication, where the authors have developed a method
of profiling [9], which is capable of detecting executed
instructions.

IV. EXPERIMENT SETUP

Initially, the power traces were measured for all the optimiza-
tions (-Oz, -Os, -O1, -O2, -O3 and -Ofast). The ChipWhisperer
CW308 UFO Board was used to measure three different
targets: STM32F0, XMEGA, and MPC5676R to cover the
most commonly used architectures for embedded development.
Reference implementation [1] of SipHash algorithm was ported
to ChipWhisperer and used afterwards. A CPA attack was
carried out and the guessing entropy [12] was calculated in
range from 2 to 2000 power traces. Values of guessing entropy
in tables are calculated from 2 000 power traces. For better
visualization of differences, graphs of correlation coefficients
for key assumptions were generated. Blue line visualizes correct
key correlation coefficient, the yellow line is for plaintext⊕v3
and the red line for all other key candidates. First testing
measurements were using 20 000 power traces but it was
verified, that even only 2 000 power traces shows the same
correlation peaks as higher number of traces, and therefore all
shown measurements are generated from 2 000 power traces.

We also performed non-specific Welch’s t-test [13] using
fixed vs. random plain text and fixed key. It is used to test the
hypothesis that two groups have equal means, which can be
used to test whether device behave differently with fixed and
random plaintext or cipher key.

A. STM32F0

The ChipWhisperer target used for the STM32 platform is the
CW308T-STM32F. More precisely it is the STM32F0, which
contains a STM32F071RBT6 processor with ARM Cortex M0
core and 128 KB of flash.

Binary files were generated using arm-none-eabi-gcc 13.2.0.
The -Oz and -Os optimization flags produce the same binary
file, therefore -Oz is omitted. A summary of binary size and
guessing entropy for 2000 power traces is in Table I.

Correlation coefficient graphs of STM32F0 are shown on
Figure 3. Optimizations -Os (a) and -O1 (b) show significant
correlation peak, in contrary to -O2 (c), which has no point
with the highest correlation for the best key candidate. -O3 (d)
has a single peak, but it is approximately the same size as
other 3 peaks. The last one -Ofast (e) looks almost exactly the
same like -O3.



TABLE I: A table summarizing the binary size of the different
optimization flags of the STM32F0 device.

Optimization flag Binary size Guessing Entropy
-Os 12 564 B 10
-O1 13 596 B 9
-O2 13 592 B 159
-O3 15 708 B 22
-Ofast 15 480 B 32

Guessing entropy for all of the optimizations is shown on
Figure 4. It is visible that guessing entropy is stabilized from
approximately 300 power traces. The flags -O1 and -Os have
the lowest guessing entropy. -O3 and -Ofast have slightly higher
guessing entropy, in range from 20 to 40. The -O2 flag has
made the implementation to have even higher guessing entropy
value than 150.

Fig. 4: Graph of STM32F0 Guessing entropy.

B. XMEGA

The CW308T-XMEGA target was used for the XMEGA
platform. It is based on ATXmega128D4-AU processor with
the AVR core architecture and 128 KB of flash.

Compiler avr-gcc 13.2.0 was used for this platform. The
-Oz and -Os optimization flags generate the same binary file,
therefore -Oz is omitted. A summary of binary size and
guessing entropy for 2000 power traces is in Table II.

Correlation coefficient graphs of XMEGA are shown on
Figure 6. All graphs (a, c, d, e) except -O1 (b) have correlation
peaks of correct key, therefore they are vulnerable to the
originally presented attack. Even -O1 with some postprocessing
can be successfully attacked.

TABLE II: A table summarizing the binary size of the different
optimization flags of the XMEGA device.

Optimization flag Binary size Guessing Entropy
-Os 6 912 B 2
-O1 8 296 B 22
-O2 6 622 B 1
-O3 10 674 B 1
-Ofast 10 674 B 1

(a) -Os

(b) -O1

(c) -O2

(d) -O3

(e) -Ofast

Fig. 3: Graphs of correlation coefficients for STM32 device.



Fig. 5: Graph of Welch t-test for STM32F0 device.

Due to the correlation peaks occurring in all optimization
flags with the exception of -O1, the guessing entropy graph
on Figure 7 is not very diverse. -O1 optimization flag has
guessing entropy around 20, while all the other flags have
value of approximately 1.

Fig. 7: Graph of XMEGA Guessing entropy.

C. MPC5676R
The PowerPC architecture is represented by the

ChipWhisperer target CW308T-MPC5676R. It contains
a SPC5676RDK3MVU1R processor with an e200z7 core
architecture and 6 MB of flash.

The PowerPC architecture uses the powerpc-eabivle-gcc
4.9.4 compiler, which is embedded in the S32 Design Studio
for Power Architecture v2.1. A summary of binary size and
guessing entropy for 2000 power traces is in Table III.

Correlation coefficient graphs of MPC5676R are shown on
Figure 9. Graphs of -Os (a) and -O1 (b) optimization contain
peaks of correlation of correct key, but it is not the highest
point. Rest of optimization flags (c, d, e) has no peaks, and
therefore it is not vulnerable to that specific attack.

TABLE III: A table summarizing the binary size of the different
optimization flags of the MPC5676R device.

Optimization flag Binary size Guessing Entropy
-Os 13 550 B 51
-O1 14 066 B 16
-O2 13 938 B 200
-O3 15 730 B 167
-Ofast 15 730 B 106

(a) -Os

(b) -O1

(c) -O2

(d) -O3

(e) -Ofast

Fig. 6: Graphs of correlation coefficients for XMEGA device.



Fig. 8: Graph of Welch t-test for XMEGA device.

The guessing entropy of all optimizations is shown on
Figure 10. For the first 300 power traces the guessing entropy
oscillates through the entire spectrum of values. From 1300
power traces it is stabilized. -O1 and -Os are the least secure
flags, while the other flags have a guessing entropy value of
more than 100.

Fig. 10: Graph of MPC5676R Guessing entropy.

V. FLAG EVALUATION

To find out which flags caused difference between -O1 and
-O2, the -O2 flag was replaced by all optimization flags it
includes and sequentially it was measured with all but one.

The difference of guessing entropy between -O1 and -O2
for all tested architectures was caused by flags -fexpensive-
optimizations, -falign-labels, -fcrossjumping, -finline-small-
functions, -freorder-blocks-algorithm=stc, -fgcse, -fschedule-
insns2, -ftree-loop-vectorize, -ftree-vrp, -fstrict-aliasing. The
reduction in STM32F0’s guessing entropy of the -O3 opti-
mization flag was caused by -fpeel-loops, -funswitch-loops and
-fversion-loops-for-strides.

However, there is no noticeable difference in t-value am-
plitude between the different optimization flags, only slightly
different graph courses caused by different binary codes visible
in Figure 8 and 11. The only exception is the -O2 optimization
flag on the STM32F0 platform, it can be seen in Figure 5,
where the t-value peak is visible around sample 18000.

VI. CONCLUSION

The measurements clearly showed that there is a signif-
icant difference between the optimization flags in terms of

(a) -Os

(b) -O1

(c) -O2

(d) -O3

(e) -Ofast

Fig. 9: Graphs of correlation coefficients for MPC5676R device.



Fig. 11: Graph of Welch t-test for MPC5676R device.

side-channel leakage. That implies developers of embedded
systems using not only SipHash but also other cryptographic
algorithms must be aware of this phenomenon. Particularly
for SipHash on the STM32F0 platform, the flags that make
implementation more vulnerable are -fpeel-loops, -funswitch-
loops and -fversion-loops-for-strides. It is most evident in
the guessing entropy. However, the results of Welch’s t-test
did not distinguish the various optimizations. This implies
that there is a difference in the distribution of the leakage
rather than in its quantity. Therefore, the side-channel attacks,
including the one which is used in this case study, must adapt
to different optimization flags. This should be the subject of
further research.

ACKNOWLEDGMENT

This work was supported by the Czech Technical University
(CTU) grant No. SGS23/208/OHK3/3T/18.

REFERENCES

[1] Jean-Philippe Aumasson. Github - veorq/siphash: High-speed secure
pseudorandom function for short messages. https://github.com/veorq/
SipHash. Accessed: 2024-01-15.

[2] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-
input prf. In International Conference on Cryptology in India, pages
489–508. Springer, 2012.

[3] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Cryptographic Hardware and
Embedded Systems-CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings 6, pages 16–29. Springer,
2004.

[4] Anh Do, S Thet Ko, A Thu Htet, Thomas Eisenbarth, and Berk Sunar.
Electromagnetic side-channel analysis on intel atom processor. Worcester
Polytechnic Institute, 2013.

[5] Inc. Free Software Foundation. Optimize options (using the gnu compiler
collection (gcc)). https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.
html. Accessed: 2024-01-15.

[6] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In Advances in Cryptology–CRYPTO
2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I 34, pages 444–461. Springer,
2014.

[7] Michael J Hohnka, Jodi A Miller, Kenrick M Dacumos, Timothy J
Fritton, Julia D Erdley, and Lyle N Long. Evaluation of compiler-induced
vulnerabilities. Journal of Aerospace Information Systems, 16(10):409–
426, 2019.

[8] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology—CRYPTO’99: 19th Annual International
Cryptology Conference Santa Barbara, California, USA, August 15–19,
1999 Proceedings 19, pages 388–397. Springer, 1999.

[9] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. Precise
instruction-level side channel profiling of embedded processors. In Infor-
mation Security Practice and Experience: 10th International Conference,
ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings 10, pages
129–143. Springer, 2014.

[10] Matúš Olekšák and Vojtěch Miškovskỳ. Correlation power analysis
of siphash. In 2022 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), pages 84–87.
IEEE, 2022.

[11] Hermann Seuschek, Fabrizio De Santis, and Oscar M Guillen. Side-
channel leakage aware instruction scheduling. In Proceedings of the
fourth workshop on cryptography and security in computing systems,
pages 7–12, 2017.

[12] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In
Advances in Cryptology-EUROCRYPT 2009: 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings 28, pages 443–461.
Springer, 2009.

[13] Bernard L Welch. The generalization of ‘student’s’problem when several
different population varlances are involved. Biometrika, 34(1-2):28–35,
1947.

[14] Baki Berkay Yilmaz, Robert L Callan, Milos Prvulovic, and Alenka
Zajić. Capacity of the em covert/side-channel created by the execution of
instructions in a processor. IEEE Transactions on Information Forensics
and Security, 13(3):605–620, 2017.

https://github.com/veorq/SipHash
https://github.com/veorq/SipHash
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Introduction
	Background
	SipHash
	CPA Attack

	Related work
	Experiment setup
	STM32F0
	XMEGA
	MPC5676R

	Flag evaluation
	Conclusion
	References

