
Implementation of the Rainbow signature scheme
on SoC FPGA

Tomáš Přeučil, Petr Socha, Martin Novotný
Faculty of Information Technology

Czech Technical University in Prague
Thákurova 9, 160 00 Praha, Czech Republic

{tomas.preucil | petr.socha | martin.novotny}@fit.cvut.cz

Abstract—Thanks to the research progress, quantum comput-
ers are slowly becoming a reality and some companies already
have their working prototypes. While this is great news for
some, it also means that some of the encryption algorithms used
today will be rendered unsafe and obsolete. Due to this fact,
NIST (US National Institute of Standards and Technology) has
been running a standardization process for quantum-resistant
key exchange algorithms and digital signatures. One of these
is Rainbow—a signature scheme based on the fact that solving
a set of random multivariate quadratic system is an NP-hard
problem.

This work aims to develop an AXI-connected accelerator
for the Rainbow signature scheme, specifically the Ia variant.
The accelerator is highly parameterizable, allowing to choose
the data bus width, directly affecting the FPGA area used.
It is also possible to swap components to use the design for
other variants of Rainbow. This allows for a comprehensive
experimental evaluation of our design.

The developed accelerator provides significant speedup com-
pared to CPU-based computation. This paper includes detailed
documentation of the design as well as performance and resource
utilisation evaluation.

Index Terms—post-quantum cryptography, multivariate
quadratic, hardware design, FPGA, system on a chip

I. INTRODUCTION

The number of devices connected to the internet has been
increasing rapidly in the past years, and so is the need for
a secure communication. At this moment, most of these de-
vices use symmetric encryption algorithms and/or asymmetric
public key algorithms such as RSA (security of which relies
on the difficulty of factoring the product of two large prime
numbers) or Diffie-Hellman key exchange (where the security
of the contemporary version relies on the discrete logarithm
problem). These public-key cryptosystems are considered se-
cure against the cryptanalysis that we can perform today.

However, quantum computers may be a threat for to-
day’s cryptography. Quantum computing uses quantum bits—
qubits—for encoding information. These bits can exist in more
than one state at the same time. Unlike classical computers, the
power of quantum computer increases exponentially with each
added qubit [1]. It is only a matter of time until a sufficiently
large quantum computer is built.

This research has been supported by the grant VJ02010010 of the Ministry
of the Interior of the Czech Republic, Tools for AI-enhanced Security
Verification of Cryptographic Devices in the programme Impakt1 (2022-
2025).

Example of such a threat is Shor’s algorithm [2], a quantum
computer algorithm for an efficient factoring of numbers. The
algorithm allows a quantum computer to factor numbers a lot
faster than if we would use conventional methods; in fact, the
time complexity is just O((logN)3) where N is the number
of bits. Compared to the classical computer, the complexity is,
even for the General number sieve which is the best known
algorithm for factoring large numbers, exponential [3] [4].
For factoring a number, Shor’s algorithm needs approximately
O(3N) qubits where N is the number of bits of the factored
number [5]. Therefore, when a sufficiently large quantum
computer is manufactured, it will render most of the RSA-
based schemes, as well as schemes relying on the discrete
logarithm problem, insecure.

In 2020, IBM released a quantum computer with 65 qubits,
and they plan to make computers with 1121 qubits available
in 2023 [6]. Given that NIST recommends at least RSA-
2048 (2048-bit key) and the memory complexity of Shor’s
algorithm, it is still not enough to crack today’s encryption.

The Rainbow scheme is one of the third-round candi-
dates in the NIST Post-Quantum Cryptography Standardiza-
tion Process. The process aims to standardize a set of key
encapsulation mechanisms and signature algorithms secure in
the presence of a quantum computer. Anyone can comment
on the submissions, and NIST evaluates both security and
performance [7].

Rainbow [8] is a generalisation of the Unbalanced Oil and
Vinegar (UOV) [9] construction. The UOV scheme intends to
provide systems, that only have a small amount of RAM and
processing power, with a public key authentification.

In this work, we implement the Rainbow scheme on an
FPGA, with the result being an Intellectual Property (IP) block
connected over the Advanced eXtensible Interface (AXI) and
serving as an accelerator in hardware/software codesign in
a system on a chip. Furthermore, we provide an experimental
evaluation of the performance and the area requirements.

II. BACKGROUND

A. Rainbow

The Rainbow [10] scheme is based on the Unbalanced Oil
and Vinegar system, which means that it relies on the fact
that solving m quadratic equations for n variables gets very

difficult [11]. To solve these, the Rainbow scheme (and the
UOV scheme) uses a special structure of polynomials.

Solving systems of general quadratic equations is believed
to be NP-hard [12]. However, thanks to their special structure,
we are able to solve it while it is not feasible for the attacker.
The signature is easy to verify (because verifying a solution
of a system of equations can be done in constant time) [9].

In Rainbow, secret linear maps are used to hide the special
structure which allows the signee to solve the system easily.
The quadratic equations consist of n unknowns called oils and
v unknowns called vinegars over a finite field K [9].

Rainbow takes the principle of UOV and applies it in layers,
i.e., subsets of equations that are solved independently at
a time, over a finite field F. Then, the Rainbow parameters
are integers 0 < v1 < ... < vu < vu+1 = n where u is the
layer number. A layer consists of two sets (indexed by i) of
variables over a finite field:

Vi = {1, ..., vi}(i = 1, ..., u) (1)

which we call vinegars and

Oi = {vi + 1, ..., vi+1}(i = 1, ..., u) (2)

which are called oils. The vinegar variables are supplied for
each layer and we solve the equations for the oil variables in
the respective layer. Therefore, we have a set of m = n− v1
(number of variables minus the number of vinegars in the first
layer—the vinegars for the first layer are populated by random
data so we get an exact solution and not a subspace) equations.

The Rainbow private key therefore consists of three maps:
The two linear maps and a central quadratic map. The central
map F which consists of m polynomials (equations) the form
of which is presented by Equation 3.

fk(x1, ..., xn) :=
∑

i,j∈Vl

α
(k)
i,j xixj +

∑
i∈Vl
j∈Ol

β
(k)
i,j xixj (3)

In Equation 3, α and β are quadratic coefficients from the
sets of vinegars and oils, respectively. The linear and constant
coefficients are omitted, as they are not used in the proposed
signature scheme nor in our implementation.

The two linear invertible maps T and S are used to hide
the structure of F . The public key P is the composition of
these three maps. All these maps are constructed over a finite
field [13].

To get a signature x = P−1(y) we first need to apply the
inverse of the affine map S, i.e. compute z = S−1(y), then
solve the equation system w = F−1(z) and then apply the
map T (compute x = T−1(w)).

After applying the inverse of the affine map S, the signature
is obtained by first generating random data which are used to
populate the v1 vinegar unknowns. Then, we populate these
vinegars into part of the central map and check whether it
is invertible. If it is not, the whole signing process is repeated
with new random vinegars. Next, we compute the remaining
variables in all the layers using Gaussian elimination. Thanks

to the special structure of F (no oil × oil terms in the
polynomials), it is guaranteed that we will get a set of linear
equations. Lastly, we apply the second affine map T .

When we get only the public key P , it seems that it
is a random quadratic system since the structure is hidden
by the affine maps S and T [8].

Rainbow signature is much smaller than the previously
described Oil-Vinegar variants. The signature is only slightly
longer than the digest of the document [8]. These schemes are
efficient when it comes to RAM and required processing power
but quite inefficient when the public key size is considered.
However, private key computations may be performed without
the public key (which is larger) [9].

B. Parameters and security levels

In the NIST competition, the Rainbow offers three different
sets of parameters for different levels of security [10]. The
parameters, as well as the minimum equivalent security of
a block cipher, are shown in Table I. The parameters are: the
size of the Galois Field, the number of vinegars for the first
layer, the number of oils for the first layer and the number
of oils for the second layer. These parameters not only affect
security but also the key size [10]. Besides these parameters,
there is also the number of layers which is always two. If we
would use only one layer, we get UOV.

TABLE I
PARAMETERS AND MINIMUM SECURITY EQUIVALENTS FOR DIFFERENT

VARIANTS OF RAINBOW [10]

Level Parameters (F, v1, o1, o2) Equiv. to (bits)
I GF(16), 36, 32, 32 128

III GF(256), 68, 36, 36 192
V GF(256), 92, 48, 48 256

The Rainbow scheme implements three different security
levels. Table II shows the key and signature sizes for different
security levels.

TABLE II
SECURITY LEVELS AND KEY SIZES OF RAINBOW [14]

Level Public key size (KiB) Private key size (KiB) Sig. size (bits)
I 157.8 101.2 528

III 861.4 611.3 1312
V 1885.4 1375.7 1632

There are two variants of Rainbow—classic and cyclic. This
work focuses on the classic variant, namely the Ia classic (first
line of Table I). However, the presented design can be altered
for any classic variant if the target device is large enough.

C. Algorithm description

This section contains an analysis of the reference imple-
mentation. Anything related to random number generation and
hashing is omitted as this work focuses solely on the Rainbow
algorithm (therefore lines 2, and 9 in algorithm 1 are omitted).
The input of the algorithm is a hashed and salted document
(digest).

First (lines 1 − 6 in algorithm 1), the vinegar variables of
the first layer are filled by random data and are populated
into the central map. This is done by using the same function
that performs matrix-vector multiplication. Then, the part of
the central map that belongs to the first layer, with regards to
these vinegars, is inverted. If the inverse is found, the algorithm
proceeds to the next stage.

After that (line 10 in algorithm 1), the remaining operations
for the first layer are performed. These consist of a multipli-
cation of the input digest by the S matrix and solving the
equations for the first layer.

Next (line 11 in algorithm 1), the variables needed for
the second layer are computed. In this phase, the function
for matrix-vector multiplication is reused, and a function for
evaluating triangular matrices is also needed.

Next (lines 12 − 13 in algorithm 1), a set of 32 equations
(with 32 unknowns) is evaluated. If the evaluation is success-
ful, the algorithm proceeds to the last stage.

In the last stage (lines 15 − 17 in algorithm 1), operations
over the T map are performed and a signature is returned.

Algorithm 1: Rainbow sign algorithm [13]

D. Related research

There are several published papers that focus on hardware
implementations of Rainbow. The first three presented imple-
mentations use different parameters to the version of Rainbow
that was submitted to the NIST standardization process. The
first paper [15] was published in 2008, and its authors designed
an architecture that can sign a digest in 804 clock cycles
at 105 MHz. It was followed by [16] in 2011, where the
signature process takes one fourth of the clock cycles but only
at 50 MHz. In these cases, the digest and the signatures are
only 24 and 42 bytes long, respectively. Lastly, there is [17]
from 2018 where the authors present a way to generate the
signature in 242 clock cycles at 50 MHz with the digest and
signature being 26 and 43 bytes, respectively.

The next paper [18] was published in 2018, and when
run with the same parameters as [15] and [16], it produces
a signature in only 148 clock cycles at 200 MHz. Furthermore,

it can work over different finite fields as well as with different
sets of parameters and, for the Ia classic variant, it produces
a signature in 1980 clock cycles at 181 MHz.

In February 2022, Ward Beullens published a pre-print that
presents a possibility of breaking the Ia classic variant of
Rainbow signature scheme in 53 hours on average using an
off the shelf laptop [19]. Therefore, the current parameters of
Rainbow may not be sufficient anymore due to the new attack
vectors.

III. DESIGN

Based on the algorithm needs, we decided to design mod-
ules implementing following operations:

• Multiplying a vector by a scalar
• Merging the vinegars of layer one into the central map
• Matrix-vector multiplication
• Evaluating the triangular matrices
• Addition
• Memory copying
• Memory resetting
• Linear equation solver
• Main controller

These modules were developed in VHDL.

A. Block diagram

In this subsection, we describe the modules implementing
the previously mentioned operations in more detail.

a) Scalar-vector multiplication: This module takes the
following signals as input: a 4096-bit accumulator (A), a 4096-
bit chunk of multiplied matrix (M) and a 4-bit GF(16)
element (k). The operation itself is A = A+M×k. Therefore,
we multiply a vector of up to 1024 GF(16) elements by
a single GF(16) scalar.

The multiplication itself is implemented as a lookup table.
There is the correct number of individual multipliers to mul-
tiply all the GF(16) elements in one BUS_WIDTH long
word within one clock cycle.

b) Matrix-vector multiplication: This module is called
gfmat_prod in the implementation and handles both the
matrix-vector multiplication as well as the merging of the
vinegars into the central map. The input is an address of
the matrix being multiplied and an address of a multiplicand
vector. For the multiplication itself, the module for scalar-
vector multiplication is used. The output is stored at a provided
memory address which can be the same as the input one.

Merging the vinegars of layer one into the central map
is also handled by this module.

c) Triangular matrix evaluation: This module is called
batch_quad_trimat_eval in the implementation. Triangular
matrix evaluation is done serially in two nested loops. This
happens once for the first layer and twice for the second. The
input is an address of the matrix, the result is stored in-place.

d) Addition: The module is called gf16_add in the
implementation. This module adds two words that are
BUS_WIDTH long (i.e., a vector of multiple elements)
from the provided addresses and saves them at a destination
address. In the case of GF(16) the addition is equivalent to
a bitwise xor.

e) Memory copying: The memcpy module copies data
from one memory address to another.

f) Memory resetting: The reset_mem module writes zeros
over all the bits in the specified address range.

g) Linear equation solver: The most complicated mod-
ule is, by far, the linear equation solver. The GSMITH [20]
solver is used, whose structure is described in subsection III-B.

h) Main controller: A controller responsible for issuing
all the control signals needed by the design.

All modules handle the loading of the needed data from the
block RAM by themselves. The block diagram of the design
is shown in Figure 1.

B. Linear equation solver

A linear equation solver is used twice during the signing
process to solve a set of linear equations, and to calculate an
inverse matrix.

One of the state-of-the-art approaches is the GSMITH [20]
architecture. It is highly parallel and allows for quick compu-
tation. There are multiple variants proposed by the authors in
the same paper but due to the data handling and speed, the
original GSMITH seems best for this purpose.

We further modified the GSMITH solver to allow com-
putation of the inverse of a matrix by elimination with an
augmented identity matrix.

C. Communication

The industry standard for connecting the ARM processor
and the FPGA sides is the AXI bus. There are three types of
the AXI [21] bus—AXI, AXI lite and AXI streaming.

Both AXI and AXI lite use memory mapping. AXI lite
allows for single-bit memory map transactions only, has very
low overhead and is ideal for control signals. The full-fledged
AXI allows memory map burst transactions. AXI lite is used
for the control signals and the full fledged AXI is used for
data transfers of the digest, the required random data for the
vinegars for the first layer, and the signature.

The modules communicate with the controller using control
signals and load the data needed for their computations directly
from the memory and write back their results. They do not
need to communicate directly between themselves. When data
from both the key ROM and the all-purpose RAM are needed
in one step, the data are loaded at the same time, saving on
clock cycles.

D. Parametrisation

The whole accelerator is designed to be parameterisable.
Different bus widths, number of variables (both oils and
vinegars) for each layer, or the number of multipliers that run
in parallel can be selected. The parameters are inspired by the

reference implementation, and most of the paramters that can
be changed there can also be changed in our design. This also
includes the number of vinegars and oils, and the Galois field
can be changed as well if the GF(16) multiplier is replaced
by one that works over the respective field.

E. Parallelisation

The part that benefits from parallelisation the most
is the matrix multiplication. The main multiplier implements

BUS_WIDTH
ELEMENT _SIZE individual GF(16) multipliers. Both param-
eters can be specified before the synthesis and directly affect
the area used. In our case, the element size is four bits (for
GF(16)).

Every time a chunk of data is loaded from the memory,
all of it can be multiplied in the next clock cycle. Adding
is also parallelized in the same way as multiplication is—all
the loaded bits are added in one clock cycle.

Latency masking is another way of speeding the design up
by loading data from the memory while performing operations
on other, already loaded, data. Every time some data must be
loaded and processed, latency masking is implemented.

IV. IMPLEMENTATION

A. Platform and language choice

For the design, we chose the ZedBoard1 which contains the
Zynq-7000 series SoC (XC7Z020-CLG484). The SoC FPGA
has 85000 logical cells available, as well as 560 KiB Block
RAM. The private key is stored in the block RAM. There
is also an integrated dual-core ARM Cortex A9 processor,
which allows performance comparison.

The accelerator was developed in VHDL. For the ARM
core, the reference implementation [13], which is written in C,
was used and it was slightly modified to run on the ARM
processor.

B. Top-level memory implementation and structure

The memory is implemented using BRAMs and distributed
flip flops. The BRAM is used for two purposes, the first one
being temporary storage. The individual modules load content
from the temporary storage into registers for processing. The
accelerator assumes that the whole block contains zeros when
the accelerator starts receiving the data to be signed. The RAM
is dual-port, therefore writing and reading can be performed
simultaneously, which is used for masking the memory latency.
Besides the temporary storage for the modules, there are three
special blocks accessible over AXI in this memory for storing
the digest, the vinegars for the first layer, and the output.

The second purpose of using BRAM is storing the key.
The key storage structure is organized in the same fashion
as in the reference implementation, with one exception, i.e.,
the key storage is modified that each part of the key always
starts at an address divisible by 64. The length of memory
block is set using the parameter BUS_WIDTH . Each block
can be addressed and read within one memory cycle.

1https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-
families/zedboard/zedboard-board-family

Fig. 1. Block diagram

C. GSMITH

GSMITH itself is a very effective and parallel structure
without a need for an external controller. However, it is de-
signed so that a new matrix row must be loaded in each clock
cycle. To deal with this, we add an externally driven clock
enable signal to its working registers to control the memory
reads.

As mentioned in subsection III-B, we further modified the
solver to provide an inverse of the matrix. This is done by the
Gaussian elimination of the original matrix with an augmented
identity matrix. Working registers of the solver are doubled
and the Gaussian elimination is performed on the input matrix,
while the same operations are performed on the augmented
matrix in the next clock cycle. In the end, if the matrix
is invertible, the result is stored in the registers that the original
matrix was loaded into.

D. Other modules

The multiplication in GF(16) is implemented as a lookup ta-
ble. This scalar multiplier is used in other blocks of the design.
Addition in the finite field is implemented as a bitwise xor.
The triangular matrix evaluation is implemented as a separate
module because of memory latency. In this case, computation
using GSMITH would be faster but thanks to the structure of
the matrices it is possible to load and process them one column
at a time. Therefore, once a column is loaded, processing can
start directly and memory latency can be masked by loading
the next column while the previous column is still being
processed. All modules perform their own memory operations

and are controlled by their own controllers, which provide
flags to the main controller.

V. EVALUATION

Several different metrics were evaluated for different values
of the BUS_WIDTH parameter. These include the used
FPGA area, power consumption, number of needed clock
cycles and the maximum frequency. This section presents
these tests in detail. All the presented data are based on post-
implementation reports generated by Xilinx Vivado 2021.2.

Changing the parameters, such as the bus width, is done in
a configuration file. The bus width directly affects the number
of LUTs used, and the computation speed.

For a comparison, we have run the reference C implemen-
tation on the ARM core where one signature takes approxi-
mately 13.227 ms (8, 809, 000 clock cycles at 666 MHz).

TABLE III
USED AREA ACCORDING TO THE BUS WIDTH

Bus width (bits) Number of LUTs Number of FFs
8 40425 34962
16 35833 22533
32 39992 35190

A. Used area

The used area was measured in terms of number of LUTs
and flip flops. Table III presents the used area for different
bus widths. If the 32-bit version is taken as the baseline, it
makes sense that the 16-bit version uses less resources as fewer

TABLE IV
NUMBER OF NEEDED CLOCK CYCLES AND MAXIMUM FREQUENCY ACCORDING TO THE BUS WIDTH

Bus width Clock cycles Clock cycles Maximum frequency Total time (ms) Total time (ms)
(bits) (with reset) (without reset) (MHz) (with reset) (without reset)

8 281000 119000 33.60 8.346 3.354
16 132000 67000 33.56 3.933 1.996
32 72000 39000 40.16 1.796 0.973

multipliers are generated to work in parallel. The amount of
needed resources is higher for the 8-bit variant because of the
LUTs necessary for address multiplexing and signal routing.

A significant part of the area is consumed by the linear
equation solver, which is not much affected by the bus width
since a lot of logic is needed for its highly parallel cell
structure. This is also why the differences in the number of
LUTs are not more significant.

B. Number of clock cycles, maximum frequency, and total
time

The clock frequency was set to the maximum possible
frequency reported by the estimation tool in Vivado.

The design assumes that the BRAM is reset to zero before
the signing starts. Therefore, the memory needs to be reset
as some modules accumulate data onto the same address.
This memory reset is done prior to the signing and consumes
a significant amount of time. This could be solved by, for
example, holding dirty bits for each memory block. The
available BRAM does not support resetting using any other
method than sequentially writing zeros over the whole memory
region, byte by byte.

Table IV presents the number of clock cycles for different
bus widths, with and without the memory reset. The number
of clock cycles scales almost linearly with the bus width (more
cycles for lower bus widths). The more data can be transferred
in one cycle, the faster the computation is.

Table IV also presents the measurements of the maximum
frequency and accordingly calculated execution time. Based
on our examination, the maximum frequency similar for the
8-bit and 16-bit variant but rises when the bus width increases.

C. Power consumption

Table V presents the estimated power consumption of the
design as well as the total power consumption per successful
signature generation (without reset). The power consumption
corresponds to the amount of resources used. The total power
used per one generated signature is reported in milliwattsec-
onds.

TABLE V
POWER CONSUMPTION ACCORDING TO THE BUS WIDTH

Bus width (bits) Power consumption (W) Power used (mWs)
8 0.307 1.03

16 0.284 0.57
32 0.298 0.29

VI. COMPARISON WITH STATE OF THE ART

As presented in subsection II-D, we are aware of four
hardware implementations of Rainbow. In this section, we
present a comparison of our work with these implementations.

Table VI presents the existing hardware implementations
as well as our results. The parameters (second column) are
explained in subsection II-B. Most of the existing implemen-
tations use different parameters than those used in the NIST
standardization process. Our work was also tested on different
hardware and with parameters submitted into the third round
of the NIST standardization process. The only implementation
that uses such parameters (by A. Ferozpuri et al. [18]) uses
parameters for the second round which uses a very different
and highly parallel structure when compared to our work. Our
work also includes the comparison between running the same
algorithm both in software and hardware on the same chip.

VII. CONCLUSION

In this work, we developed a parameterisable accelerator
for the Rainbow signature scheme and evaluated how different
data bus width affect the synthesised design in terms of the
area used, speed of computation and power consumption. We
also presented a comparison with the state of the art.

Our design generates a signature based on the digest and
provides the result over AXI. The data bus width can be ad-
justed from 8 to 32 bits which directly affects the computation
time and the consumed FPGA area. The execution time scales
linearly with the data bus width and based on our testing, we
can achieve significant speedup. We provide detailed results
that allow selection of the correct parameters based on the
need of the user.

ACKNOWLEDGEMENTS

Tomáš Přeučil and Petr Socha are members of the student
research team of the internal Czech Technical University
(CTU) project No. SGS20/211/OHK3/3T/18.

REFERENCES

[1] J. Frankenfield, Quantum Computing, Investopedia, [cit. 2022-
01-16]. [Online]. Available: https://www.investopedia.com/terms/q/
quantum-computing.asp

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, p. 14841509, oct 1997. [Online]. Available:
https://doi.org/10.1137/S0097539795293172

[3] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, “Efficient
networks for quantum factoring,” Phys. Rev. A, vol. 54, pp. 1034–
1063, Aug 1996. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.54.1034

[4] D. Bernstein and A. Lenstra, A general number field sieve implementa-
tion, 11 2006, vol. 1554, pp. 103–126.

https://www.investopedia.com/terms/q/quantum-computing.asp
https://www.investopedia.com/terms/q/quantum-computing.asp
https://doi.org/10.1137/S0097539795293172
https://link.aps.org/doi/10.1103/PhysRevA.54.1034
https://link.aps.org/doi/10.1103/PhysRevA.54.1034

TABLE VI
COMPARISON OF THE EXISTING IMPLEMENTATIONS

Work Parameters Platform LUT FF Clock cycles Max. f. (MHz) Ex. time (µs)
S. Balasubramanian et al. [15] GF(16), 17, 12, 12 Virtex-4 63593 6106 804 67 12
S. Tang et al. [16] GF(16), 17, 12, 12 Stratix II ? ? 198 50 3.96
H. Yi et al. [17] GF(16), 17, 13, 13 TSMC-0.18 µm 30000 GE 242 50 4.9
A. Ferozpuri et al. [18] GF(16), 32, 32, 32 Kintex-7 27712 27679 1980 111 17.84
A. Ferozpuri et al. [18] GF(16), 32, 32, 32 Virtex-7 27556 27675 1980 181 10.93

Our work (8bit) GF(16), 36, 32, 32 Zynq-7000 Artix-7 40425 34962 119000 33.67 3354
Our work (16bit) GF(16), 36, 32, 32 Zynq-7000 Artix-7 35833 22533 67000 33.56 1996
Our work (32bit) GF(16), 36, 32, 32 Zynq-7000 Artix-7 39992 35190 39000 40.16 973

Reference implementation (SW) GF(16), 36, 32, 32 Zynq-7000 ARM N/A N/A 8809000 N/A 13227

[5] C. Zalka, “Fast versions of shor’s quantum factoring algorithm,” arXiv:
Quantum Physics, 1998.

[6] J. Gambetta, IBMs Roadmap For Scaling Quantum Technology, IBM,
[cit. 2021-05-13]. [Online]. Available: https://www.ibm.com/blogs/
research/2020/09/ibm-quantum-roadmap/

[7] Cyber Centres summary review of final candidates for NIST PostQuan-
tum Cryptography standards, Canadian Centre for Cyber Security, [cit.
2021-05-13].

[8] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial
signature scheme,” vol. 3531, 06 2005, pp. 164–175.

[9] A. Kipnis, H. Hotzvim, J. Patarin, and L. Goubin, “Unbalanced oil and
vinegar signature schemes,” 01 2000.

[10] J. Ding, Rainbow, supporting documentation for the NIST contest
submisstion. [cit. 2021-05-13]. [Online]. Available: https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-2-submissions

[11] N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier, “Solving under-
defined systems of multivariate quadratic equations,” in Public Key
Cryptography, D. Naccache and P. Paillier, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 211–227.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness (Series of Books
in the Mathematical Sciences), first edition ed. W. H.
Freeman, 1979. [Online]. Available: http://www.amazon.com/
Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/
0716710455

[13] J. Ding, Rainbow, supporting documentation for the NIST contest
submisstion. [cit. 2021-05-13]. [Online]. Available: https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-2-submissions

[14] Rainbow Signature One of the Three NIST Post-quantum
Signature Finalists, [cit. 2021-05-27]. [Online]. Available:
https://www.pqcrainbow.org/

[15] S. Balasubramanian, A. Bogdanov, A. Rupp, J. Ding, and H. W.
Carter, “Fast multivariate signature generation in hardware: The case of
rainbow,” in 2008 16th International Symposium on Field-Programmable
Custom Computing Machines, April 2008, pp. 281–282.

[16] S. Tang, H. Yi, J. Ding, H. Chen, and G. Chen, “High-speed hardware
implementation of rainbow signature on fpgas,” vol. 2011, 11 2011, pp.
228–243.

[17] H. Yi and U. M. Khokhar, “Under quantum computer attack:
Is rainbow a replacement of rsa and elliptic curves on hardware?”
Sec. and Commun. Netw., vol. 2018, jan 2018. [Online]. Available:
https://doi.org/10.1155/2018/2369507

[18] A. Ferozpuri and K. Gaj, “High-speed fpga implementation of the nist
round 1 rainbow signature scheme,” in 2018 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), Dec 2018, pp.
1–8.

[19] W. Beullens, “Breaking rainbow takes a weekend on a laptop,” Cryp-
tology ePrint Archive, Report 2022/214, 2022, https://ia.cr/2022/214.

[20] A. Rupp, T. Eisenbarth, A. Bogdanov, and O. Grieb, “Hardware sle
solvers: Efficient building blocks for cryptographic and cryptanalytic
applications,” Integration, vol. 44, no. 4, pp. 290–304, 2011,
hardware Architectures for Algebra, Cryptology and Number Theory.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S016792601000057X

[21] ARM, “Amba axi and ace protocol specification,” online, 2003, 2004,
2010, 2011, http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/
labs/refs/AXI4_specification.pdf.

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://www.pqcrainbow.org/
https://doi.org/10.1155/2018/2369507
https://ia.cr/2022/214
https://www.sciencedirect.com/science/article/pii/S016792601000057X
https://www.sciencedirect.com/science/article/pii/S016792601000057X
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf

	Introduction
	Background
	Rainbow
	Parameters and security levels
	Algorithm description
	Related research

	Design
	Block diagram
	Linear equation solver
	Communication
	Parametrisation
	Parallelisation

	Implementation
	Platform and language choice
	Top-level memory implementation and structure
	GSMITH
	Other modules

	Evaluation
	Used area
	 Number of clock cycles, maximum frequency, and total time
	Power consumption

	Comparison with state of the art
	Conclusion
	References

