
Dummy Rounds as a DPA countermeasure in hardware

Stanislav Jeřábek, Jan Schmidt, Martin Novotný, Vojtěch Miškovský
Faculty of Information Technology

Czech Technical University in Prague
Prague, Czech Republic

Email: {jerabst1, schmidt, novotnym, miskovoj}@fit.cvut.cz

Abstract—This paper describes the technique of Dummy
Rounds as a countermeasure against DPA in hardware im-
plementation of round-based ciphers. Its principle is inspired
by several well-known countermeasures used in hardware as
Hiding and Dynamic Reconfiguration as well as countermea-
sures used in software implementations as Dummy cycles,
Random order execution or Hiding in time. Being inspired
by countermeasures based on dynamic reconfiguration, this
method combines hiding of power consumption with hiding in
time. In this work we also discuss the amount of randomness
available for the control of the computation.

Index Terms—dynamic reconfiguration, hiding, FPGA, DPA,
hiding in time, dummy rounds.

1. Introduction

Dependability requirements are still increasing. Digital
systems have to be more and more attack-resistant because
of their usage in critical systems. Attackers have many
possible methods to disable whole devices or steal some
secret data. Therefore one of possible critical threats, which
has to be prevented in modern digital systems, is secret
data leakage. A method to obtain such data from a secured
device is called an attack. One of classical side channel
attacks is based on monitoring power consumption [1] [2]
or electromagnetic radiation [3].

The attacked ciphers are commonly iterative. The most
common classes of iterative ciphers are Feistel Networks [4]
such as DES [5] or, more recently, Substitution-Permutation
Networks [6] such as AES [7] or PRESENT [8]. The
iterations are called rounds and each of them performs
similar computations. The similarity greatly simplifies im-
plementation, yet the iterations can be recognized and some
distinctive time points in them can be set as targets for
cryptanalysis. One possible countermeasure is to hide them
from an attacker.

The intention of this work is to use additional rounds
and randomization as a method of power consumption
hiding, preventing attacks by Differential Power Analysis
(DPA) [1] [2]. The technique of Dummy Rounds appeared
before in software implementation [9]. The Dummy Rounds
method is similar to some other software countermeasures,

such as Dummy Cycles [10], Random Order Execution [11],
or Shuffling [12]. Dummy Rounds were studied, in con-
junction with other methods, as a countermeasure against
fault and combined attacks [9] [13] [14]. As some of these
applications were shown to be flawed [15] [16], we limited
our study to mere DPA. Usage of Dummy Rounds has been
also proposed as a DPA countermeasure [17]. However, the
principle is still the same as in the other software imple-
mentations – insertion of some round function instructions.

The Dummy Rounds method, as we propose, combines
software hiding in time with common hardware hiding of
the circuitry power consumption. There are more parts of
hardware design which are executed but their outputs are
randomly used or not used for computation in every single
clock cycle. So, the structure of the design is the same
for every clock cycle and power consumption stays the
same. Such a behavior can be seen as a kind of dynamic
reconfiguration, used also in other methods [18] [19] [20].

While the output of the computation in a single clock
cycle changes randomly, the final result stays correct due to
round scheduling. Hence, the decision which round to use,
although randomized, must follow an algorithm, which we
discuss later.

There is detailed description of the Dummy Rounds
method in Section II. It is followed with case study on the
PRESENT cipher [8] on FPGA and measured results in
Section III. Proposed Dummy Rounds modifications, based
on the results, are described as future work in Section IV.

2. Dummy Rounds as a DPA countermeasure

2.1. Architecture and operation

Let us assume a round-based cipher with C rounds. Also,
let us assume that we can design a hardware implementation
of a round so that at least m and no more than M rounds
can be executed in a single clock cycle. Then the Dummy
Rounds method can be applied as in Fig. 1, where m = 1
and M = 3. Using a fourth input to the multiplexer, m = 0
can be implemented. The round control determines which
successive result to use. The unused round results will also
cause switching activity in each clock cycle, but their results
will not be stored in the result register. Constant switching

activity is also the principle of hardware countermeasure
called hiding [21] [22] [23]. This method is feasible for both
cipher structures, Feistel Networks [4] and Substitution-
Permutation Networks [6].

There are two important design parameters in the
Dummy Rounds application. The maximum number of
rounds per clock cycle M determines clock frequency and
influences both time and area overhead. The average number
of actually used rounds determines the (constant) number of
clock cycles needed for execution, and hence influences time
overhead.

The constant number of clock cycles parameter avoids
possible information leakage caused by extreme random
values. Without the parameter, there would be a very small
(but still higher than zero) probability, that the design will
compute only one round (or other value of m parameter)
in each clock cycle. In that case, the design could be
attacked nearly as a design without any countermeasure.
The only difference is the power consumption of the next
implemented rounds. However, if there are assumptions of
the first round values, the additional rounds can be predicted.
The case of encryption using maximum possible count of
clock cycles with M rounds computed is quite similar. With
this parameter and a corresponding controller schedule, such
a situation cannot occur.

Let us illustrate the architectural parameters on an im-
plementation of the PRESENT cipher. The cipher has 31
rounds and one extra sub-key, which is considered to be
another round, so there are total C = 32 rounds. Let us
assume the original architecture has one round per clock
cycle, which is common. Let us further assume we decided
to implement M = 3 PRESENT rounds per clock cycle,
which is a practical choice in most circumstances. With
this hardware architecture, we need N = 16 clock cycles
with 2 actually used rounds per clock cycle on average. The
clock period will be approximately three times longer, but 16
clock cycles instead of 32 will be needed for an encryption.
Therefore, the time overhead will be approximately 50%.
The round logic dominates the design, so that the upper
bound on area overhead is 200%.

2.2. Rounds control

The rounds controller has two tasks. The first one is
to assure that the correct number of rounds are executed
within the designed clock count. The other one is to prevent
uniform computations to occur. In our case, the control
is implemented in hardware and should be as simple as
possible.

For the first task, the controller has to monitor the
number of clock cycles executed and the number of used
rounds. Let cn be the number of rounds accepted up to the
step n, n ≤ N . Then, obviously,

cn ≤Mn (1)

cn ≥ mn (2)

Figure 1. Dummy cycles countermeasure scheme.

To be able to reach precisely C rounds at step N , the
following must hold

cn +m(N − n) ≤ C (3)

cn +M(N − n) ≥ C (4)

For an example of the space delimited by these inequalities,
refer to Figures 2 and 3. Notice how a small change in one
parameter (m = 0 versus m = 1) can cause a large change
in the controller state space.

When a controller decides at step n to perform sn rounds
in the next clock cycle, for the resulting number cn+1 of
accepted rounds, Inequalities 3 and 4 must also hold, so
that

sn ≤ C −m(N − n− 1)− cn (5)

sn ≥ C −M(N − n− 1)− cn (6)

These are minimal correctness ensuring requirements.
A simple controller may not utilize the entire space delim-
ited by Inequalities 1 thru 4. A more sophisticated controller
can react before Inequalities 3 and 4 apply and only modify
the probabilities of future round counts to ensure better
randomness of the process.

To continue the PRESENT example, M = 3 rounds are
computed at each clock cycle. The output from a randomly
chosen round (1 to 3) is stored in the output register. The
round controller keeps the count of already evaluated rounds
and clock cycles, so that for every encryption/decryption,
the total clock cycles is 16 (in average, 2 rounds per clock
cycle are evaluated). The controller must ensure that the
number cn of rounds accepted up to the step n remains in
the permissible points in Figure 2.

With the architectural parameters chosen for the example
(3 rounds per clock cycle, 2 rounds on average used in every
of 16 clock cycles), there are 5 196 627 ways to evaluate 32
rounds total in 16 clock cycles, while constraint of at least
one and at most three rounds is respected. The number of
possible combinations has been counted empirically, as it is

the count of possible sequences of 16 integers from one to
three, where their sum is 32. However, a DPA attack usually
targets the first or the last cycle (round) so not all number
sequences are different from the attacker’s point of view.

Our method shares the need of an RNG with other
methods using randomization, e.g. [19]. It does not have any
exceptional requirements on the generator. While an RNG
itself may be vulnerable to attacks, we have an opportunity
to use True Random Number Generator because of hardware
implementation.

3. Implementation and Results

As the case study for experimental evaluation, we have
chosen the PRESENT cipher with 3 rounds implemented in
hardware. The number of clock cycles for execution was set
to 16, as in the running example. A 64-bit linear feedback
shift register (LFSR) using the generator polynomial g(x) =
x64 + x63 + x61 + x60 +1 was used as the random number
generator. It is seeded with all the bits set to one and counts
every clock cycle of the design.

The state of the controller consists of the actual clock
cycle number and the number of rounds accepted so far.
In each state, the controller checks the uniform random
numbers obtained from the generator against Inequalities 5
and 6. Values outside the specified range are replaced by
the nearest feasible numbers. The state space is in Figure 2.
Notice that there are less states with restricted decision than
in Figure 3.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

to
ta

l r
ou

nd
s

clock cycles

full random
limited random

deterministic

Figure 2. The state space of the rounds controller for m = 1 and M = 3,
with decision types in individual states shown.

The design described above has been evaluated as an
FPGA implementation on the SAKURA-G board [24]. We
have measured 100 000 power traces and evaluated the

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

to
ta

l r
ou

nd
s

clock cycles

full random
limited random

deterministic

Figure 3. The state space of a modified controller for m = 0 and M = 3.

traces by first-order univariate non-specific Welch’s t-test,
as proposed in [25]. T-values of the power traces are shown
in Fig. 4, where raising edges of the clock signal are high-
lighted on the x-axis. T-value says, how much information
is leaking from the device power consumption. In our case,
the maximum t-value is 346, while usually a threshold 4.5
is defined to regard the design as secured.

The biggest leakage is of course at the beginning of the
encryption. There is probability exactly 1/3, that the inter-
mediate values register contains the output of the first round
at the end of the first clock cycle. This intermediate value
will have to be hidden using some other countermeasures or
at least making the start position of the encryption random.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
clock

cycle

100

200

300

t-value

Figure 4. T-values of PRESENT cipher with initial Dummy Rounds coun-
termeasure.

We have also evaluated how the design behavior depends
on the counts of computed rounds in individual clock cycles.

Besides the initial version driven with 64-bit LFSR, we have
implemented further versions for that purpose:

1) Computing exactly two rounds in every clock cycle.
2) Starting with eight clock cycles having one round

per cycle followed by eight clock cycles having
three rounds per cycle.

3) Starting with eight clock cycles having three rounds
per cycle followed by eight clock cycles having one
round per cycle.

4) Alternating one and three rounds per cycle, starting
with one round in the first clock cycle.

5) Alternating one and three rounds per cycle, starting
with three rounds in the first clock cycle.

The version number 3 (maximal t-value 804), while the
version number 1 gives the best results (maximal t-value
267). The t-values diagrams for versions 3 and 1 can be seen
in Fig. 5, respectively Fig. 6, respectively. We will further
study the effects of random values driving the design.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
clock

cycle

200

400

600

800

t-value

Figure 5. T-values of PRESENT cipher with Dummy Rounds countermea-
sure starting with 8 clock cycles having three rounds per cycle followed
by 8 clock cycles having one round per cycle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
clock

cycle

-100

100

200

t-value

Figure 6. T-values of PRESENT cipher with Dummy Rounds countermea-
sure, where two rounds in each cycle are computed.

4. Future work

In general, the results with Dummy Rounds as a DPA
countermeasure are unsatisfactory right now. We are going

to study influence of all the random values driving setups.
This section summarizes possible paths.

4.1. Clock cycle count

We have implemented the cipher with the same encryp-
tion length in every case, so every encryption or decryption
from the attacker’s point of view takes 16 clock cycles. This
decision was made due to the possible information leakage
caused by random values leading to extremely short or long
encryption described in subsection 2.1.

However, the architecture parameters can have adverse
effect on randomness. In our example, when we compute 32
rounds in 16 clock cycles, we know that the number of clock
cycles with three rounds is equal to the number of clock
cycles with one round. Moreover, we know that exactly two
rounds are computed in each of remaining clock cycles.

4.2. Dummy computation

We could also use more clock cycles for the whole
encryption process to hide the real encryption, which could
possibly take variable clock cycles count. For example,
with standard implementation of PRESENT cipher, every
encryption takes 32 cycles. We can use some of 16 spared
clock cycles in comparison with initial Dummy Rounds
because of faster encryption for some dummy encryption.
DPA attacks are generally targeting the first or the last round
of the cipher, so it is in practice more difficult to successfully
attack a design with some randomly long random values
encryption added before the start and after the end of the
“real” data encryption. Therefore, we can generate some
random value to start the encryption with, load the plaintext
into the intermediate register at some moment, perform
the encryption itself (taking possibly variable clock cycles
count), store the result and then load another random value
into the register for another dummy computation at the end.
The required data paths are shown in Fig. 7. We just have to
achieve a constant length of encryption from the attacker’s
point of view, which of course includes pre-encryption and
post-encryption dummy computations.

Dummy encryption extension (shown in Fig. 7) is also
necessary requirement when m = 0. Without that, it would
be trivial to recognize clock cycle, where no rounds were
computed. There would be extremely low power consump-
tion because of the same rounds input during two consecu-
tive clock cycles.

4.3. Rounds controller

Another thing to consider is behavior of the rounds con-
troller. In the first unsophisticated solution, we implemented
the necessary conditions only, that is, the controller modifies
the random values only when necessary, as shown in Figs 2
and 3. We could achieve more random distribution, if we
generate all the round counts computed in individual clock
cycles (how many times there will be one round per cycle

Figure 7. Dummy cycles countermeasure scheme with dummy encryption
extension.

computed etc.) at first and permute them randomly before
the start of encryption itself. Memory requirements are, of
course, a concern.

There are some threats for the principle of Dummy
Rounds itself. For example, with localized EM attacks [26]
the attacker could focus on only the first round and get
much more data leakage. Therefore, a part of the future
work is also combining the Dummy Rounds method with
other countermeasures described in [19] and an evaluation
of their combinations.

5. Conclusion

The Dummy round countermeasure described in this
paper is easily applicable to any round based cipher. The
designer just needs to copy the round block and add a mul-
tiplexor driven by RNG-based controller. It can be combined
with other countermeasures. This method strictly depends on
security of the random number generator, similarly to other
commonly used countermeasures.

Results of t-test statistical evaluation of the Dummy
Rounds method in initial version are unsatisfactory yet. The
maximum of t-values is 346, while usually a threshold 4.5
is defined to regard the design as secured. However, some
of other experiments proposed possible ways how to im-
prove the results by proper random values usage decreasing
maximum t-value to 267 for now. Therefore, it is important
to implement modifications discussed in Chapter 4 of this
paper to estimate the real potential of the method.

Acknowledgment

We thank Prof. Dr.-Ing. Tim Güneysu for helpful com-
ments.

This work was partially funded by the CELSA project
“DRASTIC: Dynamically Reconfigurable Architectures for

Side-channel analysis protection of Cryptographic imple-
mentations” (CELSA/17/033), the grant GA16-05179S of
the Czech Grant Agency, “Fault-Tolerant and Attack-
Resistant Architectures Based on programmable Devices:
Research of Interplay and Common Features” (2016-2018)
and CTU project SGS17/213/OHK3/3T/18.

References

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[2] M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart, “Power analysis,
what is now possible...” in Advances in Cryptology — ASIACRYPT
2000, T. Okamoto, Ed. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2000, pp. 489–502.

[3] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The
em side—channel(s),” in Cryptographic Hardware and Embedded
Systems - CHES 2002, B. S. Kaliski, ç. K. Koç, and C. Paar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 29–45.

[4] H. Feistel, “Cryptography and computer privacy,” Scientific american,
vol. 228, no. 5, pp. 15–23, 1973.

[5] D. E. Standard et al., “Federal information processing standards
publication 46,” National Bureau of Standards, US Department of
Commerce, vol. 4, 1977.

[6] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, no. 4, pp. 656–715, Oct 1949.

[7] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[8] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in Cryptographic Hardware and Embedded
Systems - CHES 2007, P. Paillier and I. Verbauwhede, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466.

[9] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation
and dummy rounds: Fault protection for block ciphers without check-
before-output,” in Progress in Cryptology – LATINCRYPT 2012,
A. Hevia and G. Neven, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 305–321.

[10] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power analysis
in the presence of hardware countermeasures,” in Cryptographic
Hardware and Embedded Systems — CHES 2000, Ç. K. Koç and
C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 252–263.

[11] S. Tillich, C. Herbst, and S. Mangard, “Protecting aes software
implementations on 32-bit processors against power analysis,” in
Applied Cryptography and Network Security, J. Katz and M. Yung,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 141–
157.

[12] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F.-X. Standaert,
“Shuffling against side-channel attacks: A comprehensive study with
cautionary note,” in Advances in Cryptology – ASIACRYPT 2012,
X. Wang and K. Sako, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 740–757.

[13] S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault tolerant
infective countermeasure for aes,” in Security, Privacy, and Applied
Cryptography Engineering, R. S. Chakraborty, P. Schwabe, and J. Sol-
worth, Eds. Cham: Springer International Publishing, 2015, pp. 190–
209.

[14] S. Patranabis and D. Mukhopadhyay, Infective Countermeasures
Against Fault Analysis. Singapore: Springer Singapore,
2018, pp. 197–211. [Online]. Available: https://doi.org/10.1007/
978-981-10-1387-4 10

[15] A. Battistello and C. Giraud, “Fault analysis of infective aes com-
putations,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Aug 2013, pp. 101–107.

[16] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Destroying fault
invariant with randomization,” in Cryptographic Hardware and Em-
bedded Systems – CHES 2014, L. Batina and M. Robshaw, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 93–111.

[17] C. Herbst, E. Oswald, and S. Mangard, “An aes smart card implemen-
tation resistant to power analysis attacks,” in Applied Cryptography
and Network Security, J. Zhou, M. Yung, and F. Bao, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 239–252.

[18] N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and fault
analysis resistance in hardware through dynamic reconfiguration,”
in Cryptographic Hardware and Embedded Systems – CHES 2008,
E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 346–362.

[19] P. Sasdrich, A. Moradi, O. Mischke, and T. Güneysu, “Achieving side-
channel protection with dynamic logic reconfiguration on modern
fpgas,” in 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), May 2015, pp. 130–136.

[20] P. Sasdrich, A. Moradi, and T. Güneysu, “Hiding higher-order side-
channel leakage,” in Topics in Cryptology – CT-RSA 2017, H. Hand-
schuh, Ed. Cham: Springer International Publishing, 2017, pp. 131–
146.

[21] J. L. Danger, S. Guilley, S. Bhasin, and M. Nassar, “Overview of dual
rail with precharge logic styles to thwart implementation-level attacks
on hardware cryptoprocessors,” in 2009 3rd International Conference
on Signals, Circuits and Systems (SCS), Nov 2009, pp. 1–8.

[22] D. Suzuki and M. Saeki, “Security evaluation of dpa countermeasures
using dual-rail pre-charge logic style,” in Cryptographic Hardware
and Embedded Systems - CHES 2006, L. Goubin and M. Matsui, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 255–269.

[23] C. Tu, J. Zhou, N. Gao, Z. Liu, Y. Ma, and Z. Liu, “Qrl: A high
performance quadruple-rail logic for resisting dpa on fpga imple-
mentations,” in Information and Communications Security, S. Qing,
E. Okamoto, K. Kim, and D. Liu, Eds. Cham: Springer International
Publishing, 2016, pp. 184–198.

[24] H. Guntur, J. Ishii, and A. Satoh, “Side-channel attack user reference
architecture board sakura-g,” in 2014 IEEE 3rd Global Conference
on Consumer Electronics (GCCE), Oct 2014, pp. 271–274.

[25] T. Schneider and A. Moradi, “Leakage assessment methodology,”
Journal of Cryptographic Engineering, vol. 6, no. 2, pp.
85–99, Jun 2016. [Online]. Available: https://doi.org/10.1007/
s13389-016-0120-y

[26] F. Unterstein, J. Heyszl, F. D. Santis, and R. Specht, “Dissecting leak-
age resilient prfs with multivariate localized em attacks - a practical
security evaluation on fpga,” IACR Cryptology ePrint Archive, vol.
2017, p. 272, 2017.

