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Abstract— The Hitag2 stream cipher is used in many real-
world applications, such as car immobilizers and door opening
systems, as well as for the access control of buildings. The
short length of the 48-bit secret key employed makes the cipher
vulnerable to a brute-force attack, i.e., exhaustive key search.
In this paper we develop the first hardware architecture for the
cryptanalysis of Hitag2 by means of exhaustive key search. Our
implementation on the Cost-Optimized Parallel Code-Breaker
COPACOBANA is able to reveal the secret key of a Hitag2
transponder in less than 2 hours (103.5 minutes) in the worst case.
The speed of our approach outperforms all previously proposed
attacks and requires only 2 sniffed communications between a
car and a tag. Our findings thus define a new lower limit for the
cloning of car keys in practice. Moreover, the attack is arbitrarily
parallelizable and could thus be run on multiple COPACOBANAs
to decrease the time to find the secret key.

Keywords: Hitag2, cryptanalysis, FPGA, reconfigurable
hardware, COPACOBANA

I. INTRODUCTION

Hitag2 is a stream cipher primarily used in Radio Frequency
Identification (RFID) applications, such as car immobilizers.
It has been developed and introduced in late 90’s by Philips
Semiconductors (currently NXP). According to [5], [6], [12],
[13], Hitag2 is for example used in access systems for army
and government buildings in Germany as well as in RFID car
locks, where, by pressing the button, an electronic tag sends
command to open or close the door of a car. Concerning car
security systems, Hitag2 is allegedly used in models produced
by car manufacturers such as BMW, Audi, Alfa Romeo,
Porsche, Bentley, VW, Peugeot, Renault, Citroën, Iveco trucks
and others [12], [13]. It is not clear whether the Hitag2 is still
used in newly produced cars, however, for its relatively recent
introduction, it is sure that many cars with Hitag2 are still in
daily use.

Hitag2 is by its internal structure very similar to its prede-
cessor, i.e., the Crypto1 cipher [3], [4] used in Mifare-Classic
cards. Hitag2 uses a 48 bit key and its internal state also has the
corresponding length of 48 bits. Due to its internal structure,
Hitag2 is vulnerable to algebraic attacks. Due to the relatively
short key length of the cipher, brute-force attacks on Hitag2
are feasible and practical.

In this work we introduce our implementation of a parallel
brute-force attack implemented on a Field Programmable
Gate Array (FPGA) platform, which outperforms previously
proposed algebraic attacks. In Sect. II we describe the Hitag2

cipher, its internal structure and the protocol between the
transponder and the car. In Sect. III we summarize the related
work and the previously proposed algebraic attacks that require
almost two days of computation on a standard PC and cannot
be parallelized. In Sect. IV we describe the architecture of
our attack implemented in reconfigurable hardware. The attack
reveals the key in less than two hours in maximum (i.e. less
than one hour on average) using a cluster of 120 FPGAs.
Unlike algebraic attacks, our attack can be easily scaled, which
enables trading the speed of the attack for the amount of
resources. The knowledge of the key is required for cloning the
tag [13] and unauhorized opening of a car and driving away.
In Sect. V we evaluate the performance of our attack and we
compare it with the algebraic ones and in the last Sect. VI we
conclude with final remarks.

II. HITAG2

According to [7] and [8], Hitag2 RFID chips use base
transmit frequency 125 kHz with Biphase or Manchester
modulation. The average bit rate for a reader (embedded in a
car) is 5.2kbit/s and up to 8kbit/s for a transponder (embedded
in a tag). Data are transmitted bidirectionally in half duplex
mode. Hitag2 RFID chips contain 256 bits of data that are
divided into 8 pages of 32 bits.

The chips can operate in 3 read-only modes (denoted as
Public mode A, B and C) in which data are broadcast in
plaintext. These modes are suitable for applications such as
animal identification, but they offer no security.

Hitag2 transponders can operate also in so-called Password
mode, which is mostly used in access systems for buildings.
However, this mode also does not provide any security. In
this mode the transponder and the reader interchange their
passwords, which are always the same and never encrypted.
Therefore, implementation of a replay attack is as simple as
recording to a tape recorder.

The only mode providing some (weak) security is a so-
called Crypto mode, which is mostly used in car locks. In this
work we solely focus on cryptanalysis of this mode of Hitag2
system.

In Crypto mode the transponder and the reader share com-
mon 48 bit secret key. To prevent replay attacks, the unique
initialization vector (IV) is generated for every transaction
between the reader and the transponder. The secret key,
together with the initialization vector and the serial number of
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Fig. 1. Hitag2 protocol in Crypto mode

the tag are used for initialization of a cipher. After initialization
the Hitag2 cipher produces a keystream. First 32 bits of the
keystream are used as an authenticator, and the remaining bits
are used for encryption like in any standard stream cipher. The
details of Hitag2 protocol in the Crypto mode are described
below.

A. Hitag2 Protocol in Crypto Mode

The protocol in Crypto mode is depicted in Figure 1. It
works as follows:

1) The reader (embedded inside a car) sends the command
11000 to the transponder (embedded in the portable tag).

2) The tag responds by 11111 followed by its 32 bit serial
number (SN).

3) Then the reader sends a 32 bit pseudo-random IV and
the 32 bit authenticator. The authenticator consists of
the first 32 bits of the keystream. The authenticator bits
are transmitted in reverse order.

4) Transponder computes authenticator as well. If both
authenticators match, then the transponder sends 11111
followed by the content of Page 3 of its memory
(these are 8 bits of configuration flags and 24 bits of
”transponder password”). Those 32 bits are encrypted
by bitwise XOR with the next 32 bits of the keystream.

The initialization vector is randomly generated for every
transaction between the reader and the transponder to prevent
replay attacks. Hitag2 transponders use challenge-response
authentication protocol. It is the reader (car) that generates the
initialization vector and proves its identity to the transponder
(tag) first by sending the authenticator. This prevents a chosen-
IV attack. Moreover, unless the attacker knows the content of
Page 3 of the transponder memory, the attacker obtains only
32 bits of the keystream. As the secret key has 48 bits, for
successful recovery of this key the attacker needs data from at
least two sniffed transactions between the tag and the reader.

Because of low carrier frequency (125 kHz) and low rate,
it is very simple to sniff transmitted data by simple antenna
circuit [6], [14].

B. Hitag2 Internal Structure

The internal structure of the Hitag2 cipher is shown in
Figure 2 adopted from [1]. Hitag2 consists of a filter generator

Fig. 2. Internal structure of Hitag2, initialization and encryption

with 48 bit LFSR and a nonlinear function with 20 inputs,
producing 1 output bit per 1 clock cycle. The other components
are used only at the initialization phase. The reference source
code in C language can also be downloaded from [1].

Hitag2 operates with 48 bit secret key, shared between the
reader (car) and the transponder (tag), 32 bit serial number of
the tag and 32 bit initialization vector IV. The serial number
and the initialization vector are, without any encryption, trans-
mitted between the reader and the transponder during their
communication.

1) Initialization Phase: At the beginning, the LFSR is
loaded with 32 bits of the serial number and 16 lower bits
of the secret key (top of Figure 2). Then, in 32 steps the
LSFR is filled from right with 32 bits, each of them being a
XOR of three bits—one bit of the key, one bit of the randomly
generated initialization vector IV, and one bit produced as the
output of the boolean function applied to the previous state.
The initialization phase takes 32 clock cycles.

2) Keystream Generation: For generation of a keystream,
the multiplexer on right is switched to its upper input (feed-
back from LFSR). At each clock cycle, the LFSR is updated
first, and then the output bit is computed as a result of
the boolean function of 20 inputs. This boolean function is
composed of instantiations of 4-input boolean functions f4

a

and f4
b , and a 5-input boolean function f5

c . The functions are
described by their truth tables, where e.g. f4

a = 0x2C79 =
0010110001111001 is the content of the truth table—the least
significant bit is the output for f4

a (0000), while the most
significant bit is the output for f4

a (1111).

III. RELATED WORK

Several attacks on Hitag2 have been published in the open
literature. Since the cipher had been kept secret (security by
obscurity) by the manufacturer, an important achievement was
revealing the detailed principle of the Hitag2 cipher [2]. The
description of the Cipher together with a reference program



code were published in [1]. On the basis of this cipher
description, several algebraic attacks evolved.

At the present time there are two known algebraic attacks,
as described in [5] and [6]. Both published attacks exploit
the low complexity and lack of sufficient non-linearity of
Hitag2. In principle, both attacks transform the state of Hitag2
into system of equations. Then the system of equations is
transformed into a SAT problem and solved with a SAT solver
on a PC.

In an attack described in [5], the authors are able to extract
the secret 48 bit key within 6 hours, on the basis of 16
chosen initialization vectors, by running MiniSat 2.0 on a
PC. However, as the Hitag2 protocol described above prevents
chosen-IV attacks, this attack has to be regarded as theoretical.
Another more practical attack needs data from at least 4 sniffed
transactions. With these (random) data, the calculations require
45 hours.

Another attack, presented in [6], lacks any detailed descrip-
tion. Therefore it is not clear whether the attack time (6 hours
with CryptoSAT) is again valid only for chosen-IV or whether
it is valid for any random data. We assume that the stated
attack time was only for the theoretical case of chosen-IV.

IV. OUR ATTACK

We have implemented a brute-force attack on Hitag2. The
attack works as follows: From one transaction between the
car and the tag we get the serial number of the tag, the
initialization vector, and the authenticator. Then, we generate
and test all 248 keys. Each key we load to the Hitag2 core
together with the serial number and the initialization vector,
and we generate the authenticator. Generated authenticator we
compare with the authenticator obtained from the transaction.
If we get the match, then the key loaded to the Hitag2 core
becomes a key candidate.

As the key has 48 bits, while the authenticator has only 32
bits, it is clear that about 216 key candidates would generate
the same authenticator. To select the right key, all those
key candidates are then checked against data from another
transaction between the car and the reader. These data contain
the same serial number of the tag, but the initialization vector
and the authenticator are different.

The brute-force attack could be implemented in software,
however, the attack time would be extremely long. For exam-
ple, the Pentium-IV processor is able to check about 2 million
keys per second, therefore, the attack time would be about 4
years.

Much better results we obtain when implementing the brute-
force attack in hardware. Reconfigurable devices, namely
FPGAs, offer ideal platform for implementation of such an
attack.

A. Implementation Platform—COPACOBANA

The COPACOBANA (Cost-Optimized Parallel Code
Breaker) machine [9] [10] is a high-performance, low-cost
cluster consisting of 120 Xilinx Spartan3-XC3S1000 FPGAs.
Currently, COPACOBANA and its successor RIVYERA [11]

appear to be the only such reconfigurable parallel FPGA
machines optimized for code breaking tasks reported in open
literature. Depending on the actual algorithm, the parallel
hardware architecture can outperform conventional computers
by several orders of magnitude. COPACOBANA has been
designed under the assumptions that (i) computationally
costly operations are parallelizable, (ii) parallel instances
have only a very limited need to communicate with each
other, (iii) the demand for data transfers between host and
nodes is low due to the fact that computations usually
dominate communication requirements and (iv) typical crypto
algorithms and their corresponding hardware nodes demand
very little local memory which can be provided by the on-chip
RAM modules of an FPGA. Considering these characteristics
COPACOBANA appeared to be perfectly tailored for our
attack.

Via its controller card COPACOBANA is connected to the
host computer that controls the attack. The host computer can
communicate with each individual FPGA—it can send data
or command to the FPGA, it can monitor the status of the
FPGA and, upon success, it also obtains found key. The host
computer is also able to broadcast data and/or commands to
all FPGAs in parallel.

B. Hardware Architecture of the Attack

To parallelize the attack, the search space is divided into
key subspaces. Each FPGA is by the host computer assigned
with one subspace to search in. If the search in the subspace
is finished without any success, then the FPGA is assigned
with another subspace. The attack runs until the key is found
or until all key subspaces are explored.

In our case the search space is divided into 512 subspaces,
which are defined by 9 most significant bits of the key. The
FPGA internally generates all 239 keys of assigned subspace.
The block-level structure of the Hitag2 breaker implemented
in each FPGA can be found in Figure 3. The breaker consists
of the control module and 256 Hitag2 executional cores,
denoted as H2 Core. Therefore, each FPGA verifies 256 keys
concurrently. If any H2 Core produces a key candidate, then
this key candidate is passed to the H2 Core – final (at the
bottom of Figure 3) for verification against data from second
transaction between the transponder and the reader.

1) Design Approach: In order to achieve higher perfor-
mance we exploited some properties of underlying imple-
mentation platform (FPGA). However, these properties require
special design approach described below.

Look-up tables in Xilinx Spartan-3 FPGAs are dedicated
for implementation of combinational logic. However, in some
slices the LUTs can also be configured to work as a shift
register with a maximum length of 16 bits (denoted as SRL16).
This property enables to implement much bigger shift-register-
based circuits. For example, using all flip-flops available in
used FPGA we may build the circuit containing equivalent
of 150 Hitag2 execution cores. Note that in this case all
flip-flops would be used for cores and there would be no
controller and other circuits. On the other hand, using SRL16s
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Fig. 3. Block-level structure of the Hitag2 breaker in one FPGA

we can implement up to 300 Hitag2 cores inside one FPGA,
still leaving enough LUTs and flip-flops for a controller and
other necessary circuits. However, the usage of SRL16s brings
some limitations to the circuit design—we have to avoid any
parallel input or output to the shift register. Therefore, we can
use only serial input and output. Due to this fact we have
not implemented e.g. a pipeline (which was one of design
options), since such a pipeline would require parallel access to
all bits of registers in each pipeline stage. Instead, we decided
to implement an array of small, encapsulated, independent
processing units, each having only few serial inputs.

Although up to 300 Hitag2 cores would fit into one FPGA,
we have placed there just 256+1 of them. This allowed us
significant simplification of the control module. Additionally,
we could achieve higher frequency due to more relaxed
placement and routing.

2) Control Module: Control module implements interface
to COPACOBANA bus and performs communication between
the host computer and FPGA. We developed simple commu-
nication protocol to ensure data integrity and error detection
functions. The module receives commands and data from host
application. Based on them it controls processing of assigned
subspace.

Another part of control module monitors and controls the
process in execution cores. Beside FSM it contains 31 bit
counter which is used for generating input data for execution
cores.

3) Hitag2 Execution Core: The Hitag2 execution core
simulates Hitag2 cipher operation. It is slightly modified to
simplify brute-force attack implementation. The structure of
the Hitag2 execution core is shown in Figure 4. Execution
core vital parts are very similar to Hitag2 chip implementation.
They consist of LFSR, non-linear function and few control
parts.

Execution core has only 5 input bits and 1 output bit.
The input signals consist of 3 data bits and 2 control bits.
The control signals are used for selection of one of opera-
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Fig. 4. Hitag2 execution core

tion modes (Load, Initialization, Authenticator generation and
verification). Control signals are common for all execution
cores inside one FPGA. Data signals are further divided into
2 groups—data and data2. The 2 bit signal data2 is common
for all execution cores and is used only during Load phase to
speed up LFSR load. The 1 bit signal data is unique for every
execution core.

The execution core has only 1 output signal—match. This
signal is used during Authenticator generation and verification
phase to indicate whether successively generated authenticator
still conforms to the sniffed one.

4) How it Works: The attack runs in rounds which are
divided into 3 phases (Load, Initialization, Authenticator gen-
eration and verification). At each round every execution core is
assigned with one key for verification. The key is composed of
9 bits of the key subspace, 31 bits generated by the counter in
the control module, and 8 bits which are unique for each core.
If no key candidate is found, then the counter is incremented
and the FPGA verifies the set of another 256 keys in the
next round. Below we provide detailed description of all three
phases.

In the Load phase all execution cores are loaded with 32
bits of serial number and upper 16 bits of the key. These data
are common to all cores. This phase would require 48 clock
cycles, however, we reduced the phase to just 16 clock cycles
(below).

Then, in the Initialization phase, the cores are via input
bit data loaded with product of xor operation of initialization
vector and lower 32 bits of the key. The first 24 bits of this
xor product are again common to all cores, but the last 8 bits
are unique for each core. This phase requires 32 clock cycles.

Finally, in the last phase, the Authenticator is generated and
verified. At the beginning of this phase the output bit match is
set. Then the authenticator is bit-by-bit generated in each core.
At the same moment the control module sends corresponding
bits of sniffed authenticator to the cores via their input bit data.
Each core on-the-fly compares bits of sniffed and generated



authenticator. If the two bits are not equal, output bit match
is cleared. This phase may require up to 32 clock cycles.

If the signal match is still set in some core by the end of the
last phase, then the key candidate is found. Such key candidate
is then send to the H2 Core – final, which repeats the same
above three phases, but with another data.

5) Improvements: By default each round requires 112 clock
cycles. By detailed examination of Hitag2 cipher operation and
internal processes we have implemented two special features
increasing the performance of the breaker. They are (i) parallel
3-wire LFSR load and (ii) round truncate function.

Parallel 3-wire LFSR load: As mentioned earlier, to allow
synthesis tool to configure LUTs as shift registers (which
enables effective utilization of FPGA chip), the LFSR has to
be loaded via serial input. However, loading then requires 48
clock cycles. In order to achieve better design performance, we
have decided to add 2 more load wires to Hitag2 execution
cores (in Figure 4 denoted as data2). LFSR is divided into
3 parts, each being 16 bits long. These parts are loaded
separately in only 16 clock cycles. Implementation of 3
wire LFSR load significantly reduces amount of clock cycles
required to load LFSR. We save 32 clock cycles per round,
which is 28% of the total number of clock cycles.

Round truncate function: During the Authenticator gen-
eration and verification phase, every execution core on-the-
fly verifies conformity of the generated and the sniffed au-
thenticator. In case when generated and sniffed authenticator
discontinue to conform to each other, this non-conformity is
signalized to the control module via the signal match. When
all execution cores signalize authenticator non-conformity to
the control module, the round is interrupted. The counter is
incremented, new data are generated and new round is started.
Implementation of this feature saves about 20 clock cycles per
one round on average, which is about 18% of the total number
of clock cycles in average.

Implementation of both these features saves about 52 clock
cycles out of 112, which represents about 46% on average.

V. IMPLEMENTATION RESULTS

Our proposed parallel brute-force breaker for COPACO-
BANA platform implements 256+1 Hitag2 execution cores in
each FPGA chip. The design utilizes 90% of the hardware
resources available on one FPGA chip and can run at a maxi-
mum frequency of 90 MHz. In each round of the key-search,
256 keys are verified in one FPGA. One round requires 60
clock cycles on average plus one clock cycle for initialization
of the round. Every FPGA is thus able to verify about 378
million keys per second.

As a result, one COPACOBANA with 120 FPGAs is able
to verify all 248 keys in just 103.5 minutes. For comparison,
the previously proposed attack methods are listed in Table I.
Data for software implementation of brute-force attack are
adopted from [5]. Our implemented design outperforms all
known attacks by several orders of magnitude. Moreover, our
proposed design has very low requirements on the amount
of sniffed data — only 2 sniffed transactions are sufficient

TABLE I
COMPARISON OF ATTACK METHODS

Type Implementation Attack
of attack platform time

HAR 2009 Algebraic PC N/A

ISC 2009 Algebraic PC 45 hours

SW implementation Brute-force PC 4 years
of a brute-force attack

Our implementation Brute-force COPACOBANA 103.5 mins

to reveal the secret key. Other attack implementations require
data from at least four sniffed transactions.

Another advantage is the almost linear design scalability. It
is straightforward to use more COPACOBANA machines in
order to reduce the attack time. For example, when using 4
COPACOBANA machines, the time required to verify all keys
in the key space would be less then half an hour.

We have practically verified the entire design and all its
modules with large set of testbenches and test data sets to
verify its proper function. The design fulfills all requirements
and passed all tests.

VI. CONCLUSIONS AND FINAL REMARKS

In this work we have introduced a highly efficient imple-
mentation of a parallel exhaustive key-search of the Hitag2
cipher. Our attack is practically realized on the cryptanalytic
hardware platform COPACOBANA. Each FPGA in COPACO-
BANA verifies about 378 million keys per second, therefore,
one fully equipped COPACOBANA with 120 FPGAs is able to
determine the correct key in less than 2 hours (103.5 minutes)
in the worst case. The proposed design is almost linearly
scalable, which allows further reduction of the attack time by
employing more COPACOBANA machines.

The brute-force attack outperforms all previous implemen-
tations by several orders of magnitude. Just two monitored
communications between a Hitag2 transponder and a reader,
instead of 4 sniffed transactions required in other published
attacks, are sufficient to reveal the secret key.

The attack also demonstrates the power of reconfigurable
devices. Although the brute-force attack is in general the most
demanding type of attack, its implementation in hardware is
much faster then software implementation of less complex
algebraic attack.

Further improvement may be gained by implementing the
algebraic attack in hardware. However, this type of attack
requires SAT solver, which represents serious design limitation
— to the best of our knowledge, there is sill no existing
implementation of SAT solver in hardware.
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