
Versatile Hardware Framework for Elliptic Curve
Cryptography

Vı́t Mašek∗† and Martin Novotný∗
∗ Czech Technical University in Prague, Prague, Czech Republic

{masekvit|novotnym}@fit.cvut.cz
† TropicSquare s. r. o., Prague, Czech Republic

vit.masek@tropicsquare.cz

Abstract—We propose versatile hardware framework for ECC.
The framework supports arithmetic operations over P-256,
Ed25519 and Curve25519 curves, enabling easy implementation
of various ECC algorithms. Framework finds its application area
e.g. in FIDO2 attestation or in nowadays rapidly expanding field
of hardware wallets. As the design is intended to be ASIC-ready,
we designed it to be area efficient. Hardware units are reused for
calculations in several finite fields, and some of them are superior
to previously designed circuits in terms of time-area product.
The framework implements several attack countermeasures. It
enables implementation of certain countermeasures even in later
stages of design. The design was validated on SoC FPGA.

Index Terms—Elliptic curve cryptography, Public key cryptog-
raphy, Side channel hardening, ECDH, EdDSA, ECDSA, FPGA

I. INTRODUCTION

Elliptic curve cryptography [1] is nowadays used in many
cryptographic algorithms, such as digital signature [2] or
Diffie-Hellman key exchange [3]. It takes advantage over
RSA [4] in shorter keys while keeping the same security
level which often leads to more modest design. ECC-based
algorithms include e.g. ECDSA (over NIST curves P-256, P-
224 or P-384) [5], EdDSA [6] (over Edwards curves Ed25519
and Ed448 [7, 8]) or ECDH (based on Curve25519 and
X25519 [9]).

When implementing cryptographic algorithms, the designer
must pay special attention to side-channel attacks, such as
DPA [10], CPA [11], SPA or timing attacks [12], and to fault-
injection attacks [13]. Many countermeasures against side-
channel attacks are based on hiding or masking principle [14].
Hiding typically randomizes the power consumption (hiding
in amplitude) or time of execution (hiding in time). Masking
randomizes processed data to make it difficult for an attacker
to predict any intermediate values.

In this work we focus on design of hardware framework
that provides:

• Arithmetic over general finite fields with up to 256 bit
primes.

• Optimized arithmetic over P-256, Ed25519 and
Curve25519 to support ECDSA, EdDSA and ECDH.

This research has been supported by the grant VJ02010010 of the Ministry
of the Interior of the Czech Republic, “Tools for AI-enhanced Security
Verification of Cryptographic Devices” in the program Impakt1 (2022-2025).

• Sharing of hardware resources to be area efficient.
• Set of side channel countermeasures.
• Set of instructions allowing freedom in the choice of

algorithms and countermeasures in later stages of design.
• Standardized AHB interface and special handshake in-

terface to obtain and provide secret data, e.g. random
number, private key or computed secret result.

• ASIC-ready design.
Such a hardware framework finds its application e.g. in FIDO2
attestation [15] or in nowadays rapidly expanding field of
hardware wallets. Critical parts (flag registers) utilize triple-
module redundancy (TMR). Functionality of the framework
was validated on Xilinx Zybo Zynq-7000 platform equipped
with Artix-7 FPGA, however, as the framework is ASIC-ready,
we refrain from implicitly using FPGA specific resources.

This paper is structured as follows: Chapter II brings neces-
sary background and discusses side-channel countermeasures
applicable to ECC. In Chapter III we discuss our design strat-
egy and describe the arithmetic unit in more detail. Chapter IV
shows synthesis results on the target platform. In Chapter V we
discuss our future work on this topic. Chapter VI summarizes
results of this work.

II. BACKGROUND

To reach the goal of implementing ECC algorithms men-
tioned above, the design should support modular arithmetic
over following four primes:

• p256 = 2256 − 2224 + 2192 + 296 − 1
• p25519 = 2255 − 19
• #E256, the order of P-256.
• #E25519, the order of Ed25519 and Curve25519.

The arithmetic in GF (p256) and GF (p25519) should be opti-
mized for performance, since it will be used thousands times
per signature.

A. Related work

There are many works related to ECC implementation
over prime field GF (p). One of the first implementations of
ECC over GF (p) in reconfigurable hardware were proposed
in [16, 17]. Recent works on implementation of P-256 in-
clude [18] and [19], while [20] focuses on Ed25519 together
with Curve25519 for Diffie–Hellman key exchange. The 100
microseconds barrier of X25519 was then broken in [21].978-1-6654-9431-1/22/$31.00 ©2022 IEEE

B. Side-channel countermeasures

Besides constant time of computation preventing timing
attacks [12], the designer must implement several other coun-
termeasures to further protect the design against other types
of attacks. Here we discuss three masking techniques applica-
ble to ECC [22], namely Z-coordinate randomization, scalar
blinding, and point blinding.

With Z-coordinate randomization, we use projective co-
ordinates (X,Y, Z) to represent point on elliptic curve, s.t.
(x, y) = (xZ, yZ,Z). Random value Z is generated when
converting to projective coordinates. The point can be re-
randomized at any time by simply generating another random
value r and multiplying all three coordinates, (xZ, yZ,Z) =
(xZr, yZr, Zr).

When calculating scalar point multiple Q = s · P , one can
mask both scalar s and point on curve P . Scalar blinding
masks the secret scalar s with some random value r. We derive
two new scalars as s1 = r, s2 = s−r, i.e. s1+s2 = s. Result
Q is then calculated as Q = s1 ·P + s2 ·P . Alternatively, we
can blind the scalar as s′ = s+ r ·#E.

Point blinding works on similar principle. We generate
random point R on the curve and then derive two new points
as P1 = R,P2 = P −R, i.e. P1 + P2 = P . Result Q is then
calculated as Q = s · P1 + s · P2.

III. DESIGN

In this section we describe our design strategy, the way
we implement efficient non-modular and modular arithmetic
and how we prepare the design to accommodate certain side-
channel countermeasures.

A. Design Strategy

Our design is versatile, i.e. when one decides to change al-
gorithms (e.g. point addition or doubling, scalar multiplication,
...) or even to add a new curve to the mix, it can be done easily
with no need to touch much of the design. To achieve this
goal we implement the framework as a micro-architecture with
instruction decoder and custom set of instructions. Algorithms
are then implemented in firmware. The micro-architecture is
composed of datapath, controller and memory subsystem, as
seen in Fig. 1.

Let define following terms: Firmware (microcode) consists
of instructions that are decoded by instruction decoder. In-
struction is composed of one or several operations. Operation
refers to calculation performed by HW (sub)unit. It can last
one or several clock cycles.

B. Instruction Set

Instruction set consists of four classic types of instruction –
R, I, M, J. Besides instructions for program flow control such
as branches, 32 bit arithmetic, subroutine calls etc., our custom
ISA contains also special instructions for modular arithmetic,
such as addition, subtraction, reduction and multiplication
in GF (p) and special instruction for fast multiplication in
GF (p25519) and GF (p256). Instructions for obtaining random
value from external TRNG and obtaining private keys are also

REG
FILE ALU

INT.
REG.

DTPH

CONTROLLER

PROGRAM

OUT RAM

. . .

IN RAM

MEM. SUBS.

RND

PRKAHB

Fig. 1. High-Level Design

Multiplication

Modular

Shift

32 bit ALU

SHA-512

a

b

m

h

Input
Register

Fig. 2. Internal structure of arithmetic unit

present, as well as instructions for SHA-512. Each instruction
has 32 bits, with bit 31 reserved as a parity bit to prevent fault-
injection attacks against the microcode. The program memory
has space for 2048 instructions.

C. Datapath

Datapath consists of an arithmetic unit, a register file and
an intermediate register.

Register file can hold 32 values, each being 256 bits wide.
The file is implemented as RAM, since implementation by flip-
flops would be high area demanding. Although RAM allows
fetching of only one operand in one cycle, slight performance
lost is negligible.

D. Arithmetic Unit

The arithmetic unit contains input registers a, b, m and
h, and subunits implementing certain subsets of operations.
The two main subunits are Modular subunit and Multiplication
subunit, as seen in Fig. 2.

Modular subunit performs modular addition, subtraction and
reduction by up to 256 bit general modulus m. It is composed
of 257 bit adder, 257 bit intermediate register c, and control
logic. Addition and subtraction is done by adding/subtracting
the operands a and b followed by trial subtraction/addition
of m. Reduction is available for values of up to 512 bits
wide. The value to be reduced is stored into registers a
and b, s.t., ab = a · 2256 + b. Reduction is then done via
modular multiplication by 1, using double-and-add algorithm

with interleaved reduction. As we are multiplying by 1, the
double-and-add part is simplified to logical left shift of c and
shifting in the actual bit of ab. After each step, trial subtraction
of modulus m is done. This design approach allows us to reuse
the resources for addition/subtraction. Time ineffectiveness of
reduction is negligible since it will be used only a few times
per ECC algorithm. Besides these operations, Modular subunit
can also serve as a modular accumulator (applicable e.g. for
reduction in P-256), as non-modular adder with ability to hold
carry bit (i.e., addition of operands wider than 256 bits can be
done as well; applicable e.g. when computing s′ = s+r ·#E),
or as simple trial subtractor of m.

Multiplication subunit performs non-modular multiplication
of two 256 bit operands resulting in 512 bit result, and fast
multiplication in GF (p25519). This subunit is composed of
four 16×16 one-cycle multipliers, intermediate register p,
result register c, and control logic. The 256×256 non-modular
multiplication is done in 64 cycles using schoolbook algorithm
with 16 bit words. When implementing fast multiplication
in GF (p25519), we first considered adopting the design pre-
sented in [20]. This design is FPGA-optimized, exploiting
15 (otherwise unused) DSP48E units to reach the maximum
speed. When transferred to ASIC, such a design would occupy
high area. Even scaling-down the design to just four DSP48E
units (i.e. four multipliers) and sharing resources with already
designed four multipliers (see above) is not advantageous, as
the multipliers in [20] are of different size 21× 17 and much
additional logic would be necessary to share the resources.
For that reasons we decided to use already designed 256×256
multiplier, add one extra 16 bit register and some additional
control logic, do non-modular multiplication first and then
perform fast reduction of the 512 bit c result by p25519. The
reduction is done in four steps:

1) h = c/2255, l = c (mod 2255)
2) h = h · 19
3) h = (h (mod 2255)) + (h/2255) · 19
4) c = h+ l

After these four steps, c holds the result. As the result may
be p25519 ≤ c ≤ 2p25519 − 1, one more trial subtraction is
needed. This is then done by the Modular subunit described
above. By this approach, multiplication in GF (p25519) is done
in 76 cycles with just 4 multipliers 16×16 (equivalent to 1192
LUTs). This yields in twice better time-area product compared
to [20], that performs multiplication in 33 cycles, but with 15
multipliers 21×17 (equivalent to 5505 LUTs). The amount of
FFs and additional control logic is roughly the same.

Multiplication in GF (p256) is done the same way as in
GF (p25519) – non-modular multiplication is followed by fast
reduction. The fast reduction is done with algorithm described
in [19] and the Modular subunit is used as an accumulator
modulo p256. Note that design in [20] is hardwired for
GF (p25519), which limits its potential reuse for GF (p256).

E. Side channel countermeasures

Timing attacks are prevented on every level of calculation.
Operations in HW units are performed in constant time (in-

dependently on processed data), as well as all instructions.
Scalar point multiplication will be implemented in firmware
using Montgomery ladder algorithm [23].

For SPA countermeasures, the Montgomery algorithm can
be implemented either with branches or using conditional swap
of the two points Q0 and Q1. For this, special instruction
CSWAP is prepared.

Critical parts of the design use TMR to prevent faults. E.g.,
the flag register is implemented as three registers, where one
holds inverted values. Instruction code contains one parity bit
to check if a fault was injected into FW.

Certain masking countermeasures will be implemented in
firmware, e.g., Z-coordinate randomization, or point blinding.
Scalar blinding is be implemented via group scalar ran-
domization [22]. We will use 256 bit random value r, so
the randomized scalar results in 512 bit value. The formula
s′ = s + r · #E is implemented as one operation in the
arithmetic unit with dedicated instruction, to maintain less
work with private keys.

Randomness for above mentioned countermeasures is pro-
vided from an external TRNG. Special instruction implements
handshake protocol with TRNG, and stores generated value to
the register file.

Private keys can be obtained directly from external system,
via same handshake as for random value, in case of it is
considered insecure to load private keys via the AHB bus to
the memory subsystem.

IV. SYNTHESIS RESULTS

Table I provides results of synthesis done with Vivado
2020.02. The synthesis was set to not infer DSP48E units
and use LUTs instead. ASIC results (equivalent gates) were
obtained by Synopsys CAD-tools.

V. FUTURE WORK

Implementation of firmware is to be done. Then, we will
analyze side-channel resistance of the proposed framework.
Based on the results, additional countermeasures will be de-
signed and implemented. Alternatively, some countermeasures
may show as superfluous and could be removed.

VI. CONCLUSION

We discussed, proposed and designed versatile hardware
framework for ECC. The framework supports arithmetic oper-
ations over P-256, Ed25519 and Curve25519 curves, enabling
easy implementation of ECDSA, EdDSA and ECDH algo-
rithms. Other curves and/or algorithms can be added at low
cost. Hardware framework finds its application area e.g. in

unit LUT LUTRAM FF gates
DTPH 10462 300 4180 74793

ALU 9021 128 3667 69750
HASH 1839 128 1564 24715

MULT+MOD 4052 0 1079 25622
TABLE I

SYNTHESIS RESULTS

FIDO2 attestation or in nowadays rapidly expanding field of
hardware wallets. To make the design area efficient, hardware
units are designed to support arithmetic operations in several
finite fields. Moreover, our design of GF (p25519) multiplier
is superior to that of [20] in terms of time-area product, and
can be easily reused for multiplication in GF (p256).

To prevent timing attacks, all operations are executed in
constant time. Several countermeasures will be implemented
also in firmware. The design is ASIC-ready. It was validated
on SoC FPGA platform.

Side-channel resistance evaluation is a subject of future
work and will be provided later.

VII. ACKNOWLEDGEMENT

This work was supported by the Student Summer Research
Program 2021 of FIT CTU in Prague.

REFERENCES

[1] Victor S Miller. “Use of elliptic curves in cryptogra-
phy”. In: Conference on the theory and application of
cryptographic techniques. Springer. 1985, pp. 417–426.

[2] Michael J Ganley. “Digital signatures and their uses”.
In: Computers Security 13.5 (1994), pp. 385–391.

[3] W. Diffie and M. Hellman. “New directions in cryptog-
raphy”. In: IEEE Transactions on Information Theory
22.6 (1976), pp. 644–654.

[4] R. L. Rivest, A. Shamir, and L. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key Cryp-
tosystems”. In: Commun. ACM 21.2 (Feb. 1978),
pp. 120–126.

[5] National Institute of Standards and Technology. Digi-
tal Signature Standard. Tech. rep. Federal Information
Processing Standards Publications (FIPS PUB) 186-
4. Gaithersburg: National Institute of Standards and
Technology, 2013.

[6] National Institute of Standards and Technology. Digi-
tal Signature Standard. Tech. rep. Federal Information
Processing Standards Publications (FIPS PUB) 186-5
(draft). Gaithersburg: National Institute of Standards
and Technology, 2019.

[7] Daniel J. Bernstein et al. “High-Speed High-Security
Signatures”. In: CHES. Vol. 6917. Lecture Notes in
Computer Science. Springer, 2011, pp. 124–142.

[8] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve.
Cryptology ePrint Archive, Report 2015/625. https://ia.
cr/2015/625. 2015.

[9] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman
Speed Records”. In: Public Key Cryptography - PKC
2006. Ed. by Moti Yung et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 207–228.

[10] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differ-
ential Power Analysis”. In: Advances in Cryptology —
CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[11] Eric Brier, Christophe Clavier, and Francis Olivier.
“Correlation Power Analysis with a Leakage Model”.
In: Cryptographic Hardware and Embedded Systems
- CHES 2004. Ed. by Marc Joye and Jean-Jacques
Quisquater. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 16–29.

[12] Paul C. Kocher. “Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other Systems”. In:
Advances in Cryptology — CRYPTO ’96. Ed. by Neal
Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104–113.

[13] Alessandro Barenghi et al. “Fault Injection Attacks on
Cryptographic Devices: Theory, Practice, and Counter-
measures”. In: Proceedings of the IEEE 100.11 (2012),
pp. 3056–3076. DOI: 10.1109/JPROC.2012.2188769.

[14] Stefan Mangard, Elisabeth Oswald, and Thomas Popp.
Power Analysis Attacks: Revealing the Secrets of Smart
Cards (Advances in Information Security). Berlin, Hei-
delberg: Springer-Verlag, 2007.

[15] FIDO Alliance. FIDO2: Web Authentication (WebAu-
thn). URL: https : / /fidoalliance .org /fido2 /fido2- web-
authentication-webauthn/.

[16] Gerardo Orlando and Christof Paar. “A Scalable GF(p)
Elliptic Curve Processor Architecture for Programmable
Hardware”. In: Cryptographic Hardware and Embed-
ded Systems — CHES 2001. Ed. by Çetin K. Koç,
David Naccache, and Christof Paar. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 348–363.

[17] A. Satoh and K. Takano. “A scalable dual-field elliptic
curve cryptographic processor”. In: IEEE Transactions
on Computers 52.4 (2003), pp. 449–460.

[18] Di Matteo Stefano. Design of an ECC hardware accel-
erator for ECDSA applications compliant to the WAVE
standard (master thesis). Feb. 2019.

[19] Rashmi Agrawal, Ji Yang, and Haris Javaid. “Efficient
FPGA-based ECDSA Verification Engine for Permis-
sioned Blockchains”. In: CoRR abs/2112.02229 (2021).
arXiv: 2112.02229. URL: https: / /arxiv.org/abs/2112.
02229.

[20] Furkan Turan and Ingrid Verbauwhede. “Compact
and Flexible FPGA Implementation of Ed25519 and
X25519”. In: ACM Trans. Embed. Comput. Syst. 18.3
(Apr. 2019).

[21] Philipp Koppermann et al. “Low-latency X25519 hard-
ware implementation: breaking the 100 microseconds
barrier”. In: Microprocessors and Microsystems 52
(2017), pp. 491–497.

[22] Jean-Luc Danger et al. “A synthesis of side-channel
attacks on elliptic curve cryptography in smart-cards”.
In: Journal of Cryptographic Engineering 3.4 (2013),
pp. 241–265.

[23] Peter L. Montgomery. “Speeding the Pollard and elliptic
curve methods of factorization”. In: Mathematics of
computation 48 (1987), pp. 243–264.

