Building a Side-Channel Attack Scheme on
SipHash FPGA Implementation

Vit Masek, Vojtéch MiSkovsky, Matis OlekSak
Faculty of Information Technology
Czech Technical University in Prague
Prague, Czech Republic
{masekvit,miskovoj,oleksmat } @fit.cvut.cz

Abstract—This paper introduces a novel side-channel attack
scheme targeting FPGA implementations of the SipHash cipher,
a cryptographic hash function commonly used for message
authentication. At the time of writing, we were unaware of any
side-channel attack on hardware implementation of the SipHash.
A leakage function was built that is able to compute part of
the internal state after 1 round based on just a few bits of
the key. Our approach is based on progressively eliminating
incorrect subkeys in iterations, while adding new bits of the key
we attack, rather than trying to extract the subkey directly. The
total amount of key hypotheses does not exceed a limit when it
becomes unfeasible to compute. In the end, all 128 bits of the
SipHash key are retrieved solely from the Hamming distance of
the initial state and the state after first round.

Index Terms—ARX-based cryptography,
Channel Attacks, FPGA

SipHash, Side-

I. INTRODUCTION

Side-channel attacks (SCAs) are a class of intrusive tech-
niques that exploit the physical implementations of crypto-
graphic systems, rather than flaws in the algorithms them-
selves. These attacks leverage information collected from the
physical environment of the cryptographic device, including
timing information [1], power consumption [2], or electromag-
netic leaks [3]. Initially recognized in the late 1990s, SCAs
have since emerged as a significant threat to the security of
cryptographic modules.

The SipHash cipher, introduced by Aumasson and Bernstein
in 2012 [4] is an ARX-based cryptographic hash function
optimized for speed and aimed at safeguarding against hash-
flooding DoS attacks. It is widely appreciated for its simplicity
and efficiency in generating 64-bit Message Authentication
Codes (MACs) from a variable-length message and a 128-bit
secret key.

II. BACKGROUND AND RELATED WORK
A. SipHash

SipHash is a pseudo-random function used for 64-bit MAC
generation with 128-bit key. Its core is an ARX function
SipRound, see Figure 1. Its 256-bit state is divided into four
64-bit words — vg. 3. First, the key is XORed to the initial
state. The message is then embedded into the state by 64-bit
blocks. After a message block is XORed to the state, the state
is updated by the SipRound function, as shown in Figure 2.
When the full message is processed, final rounds of SipRound

are performed and the 4 state variables are XORed together
making the final 64-bit result.

ko k1

SipRound
SipRound
SipRound
SipRound

)
>

k(] kl 1 ff

Fig. 2. SipHash-2,4 Scheme

B. Side-Channel Attacks Targeting ARX-Based Functions

The results of [5] indicate “potential intrinsic resilience” of
ARX-based functions against side channel attacks. However,
authors of [6] found a leakage in each core operation (addition,
rotation, and xor) and calls for a re-evaluation of security
assumptions.

While successful side-channel attack on software implemen-
tation of SipHash was presented in [7], FPGA implementations
seem to be still untouched. The simplicity of SipRound func-
tion allows to implement it in only one clock cycle, making
it basically impossible to target any intermediate value within
the SipRound function itself, as the attack presented in [7]
does.

Due to the big difference between CPU and FPGA imple-
mentation of SipHash, the leakage function presented in [7]

cannot be directly reused for FPGA implementation. This
paper aims to address this obstacle, and introduces a novel
approach to target the result of SipRound, rather then its
intermediate values, making it suitable for attacking FPGA
implementations.

III. BUILDING THE ATTACK

This section describes the process which leads to success-
fully building a side-channel attack scheme on SipHash, that
can be used for FPGA implementations. The attack was build,
debugged and tested using model implementation of SipHash
in Python for simplicity. We observe the intermediate values
and model the power consumption. With this approach, we are
able to better understand and debug issues that came along the
process.

We tested the model against our real FPGA implementation
of SipHash using ChipWhisperer CW308 UFO Board with
Spartan-6 target. It was experimentally verified that the real
and modeled power consumption has high corelation, giving
us a confidence in using this approach, rather than straight
trying to attack a real device.

A. Notation

o K — SipHash key

e P — Input to the very first SipRound

e S — Output of the very first SipRound

e S; — Value of i-th bit of S

e I — Sorted list of bit indexes of K

o I, — Sorted list of all bits of K, that has direct influence
on the value of S;

o K — Set of subkeys using bits of from [

e k; — Subkey from K

B. Analyzing the SipRound

For the initial attack, we need to find a bit ¢ of S (S;),
which value is determined by only small number of bits of
the secret key K. If we find such S;, we can mount a classic
DPA using this bit and retrieve the corresponding bits of K.
We run analysis to get the list I; of all key bits needed to
compute the value of S;. Figure 3 shows the size of I; for all
256 bits 7 of the state.

0 16 32 48 64 80 96 112128144 160 176 192 208 224 240 256
S;

Fig. 3. Number of key bits influencing the value of bit S;

For i starting from 160, only few key bits are needed
to compute the given bit of the internal state after the first
SipRound. These bits are a good candidates to mount a DPA
attack.

C. Leakage Function and its Success Rates

We define a leakage function
L(ky,, mo,i) = SipRound(IV @ ki, ® mg);

where kj, is a key hypothesis on I; key bits, and also a
measurement function

O(K,myg, 1) = SipRound(IV & K & my);

where K is the correct key. Then we define a success rate
function for given key hypothesis as
_

| M|

where M is a set of random messages, and

Meq = {mo S MlO(K, mo,i) == L(k?[“mo,i)}

For the correct key hypothesis, the mentioned equality will
hold for all mg € M, and R = 1. For incorrect hypothesis, R
should converge to 0.5.

We try bit i = 161, where |I 61| = 4, so 2* key hypotheses.
We compute the R function for each hypothesis, using |M| =
40.000, and get results shown in Figure 4.

1

Success rate
o
&

6 7 8 9 10 11 12 13 14 15
key hyphothesis

Fig. 4. Success rates of each kr, 4, using bit S161

Using the leakage function and the success rate model, we
are able to separate the key hypotheses into three groups:

« R=1
e R=0

Mounting DPA targeting the value of Si141 would eliminate
the keys for which R ¢ {0, 1}, which is exactly half. We note
these keys as K7,. If done for 7 = 162, the elimination is 75%,
and for ¢ = 163 it is 87.5 %.

The fact that multiple key hypotheses also pass this test
and have R = 1 is not surprising. Actually, it holds with
the findings of [8]. Generalized ARX-Box has the property,
that for each key k, there is a key k' # k, always leading to
the same result. Furthermore, we found out that this property
may be extended to additional keys &’ which always lead to
opposite result, when considering only single bit. This is the
group where R = 0.

D. Iterative Attack

Using single bit of the SipHash state, we are able to
eliminate some keys, however, the size of I; for bits from
i =161 grows quickly, and it becomes unfeasible. The idea is
to use the knowledge of K, got by targeting bit ¢ to reduce
the number of key hypotheses K7, for different state bit j
upfront. R

So we first target the state bit 161, and get K7, . Then, we
move to bit 162, and extend the set Ky,,, to Ky,,,, by only
enumerating bits b € I162 \ I161. Because |I162 \ I161]| = 3, for
each subkey from K7p,,, we add 23 keys to the new set K7, .
And because |K7y,,,| = 23, the size of the final set Ky, of
key hypotheses is 23 x 23 = 26,

Instead of targeting the state bit 162 directly, we used the
knowledge got by targeting state bit 161, and all together we
need to try

91161 + glle2\T1e1| — o4 +26 < glle2| — 97

With each iteration, moving from bit ¢, we find an unused
bit j such that |I;\I;| is the smallest, and then the key bits used
in the next iteration is 1 = I; U I;. We iterate until |I| = 128
(full key) and | K| is in brute-force range.

Figure 5 plots the size of K; with respect to the size of
I throughout the iterations. The number of key hypotheses
reaches a maximum of 2273 in iteration 36. From then, is
starts shrinking again. In iteration 66 the size of I hits the
full key size. After 88 iterations and total of 23° tried key
hypotheses, we are left with 16 last possible keys.

—
=
o

number of key bits

16

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 76 80

Attack iterations

Fig. 5. Iterative Attack Progress — Success Rate Model

E. Full State Model

So far, we used the simplified success rate model, where
we were comparing the value of our leakage function L and
measurement function O. We ignored the rest of the SipHash
state, considering it as a random noise.

Now, we start to model the power consumption as a Ham-
ming distance between

P=(IVaK), and S = SipRound(P ® mg)

From our experiments on real FPGA implementation, using
ChipWhisperer platform and Spartan6 FPGA target, this model
of power consumption reaches a correlation of 0.6 with the real
measurements.

Even if our leakage function computes only the value of .S,
because the value of P; is constant, we can simply consider

it as 0. If the real value of P; is 1, in the success rate model,
this would just result in R = 0 for the correct key. For the
key hypothesis that would have R € {0,1} in the success
rate model, the DPA partitioning and the absolute difference
of means (DoM) will be equal. This is why we can avoid
computing the actual value of P;.

Bad Bits: We quickly find, that the attack fails after a
few iterations. This is caused by so-called “bad bits”. The
Hamming distances on some pairs of state bits is perfectly
correlated. Sometimes positively, sometimes negatively. This
results in following difference of means in the Hamming
distance on the full state, when we partition the modeled traces
using given bit of state for correct key, see Figure 6

91 L P

11 NP0l Pt PN PPN 0P

DoM

0 PRI
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
state bits

Fig. 6. Correct Absolute Difference of Means per bit %

In general, we would expect the DoM to converge to 1 for
all bits. But if a pair of bits (¢, j) is negatively correlated:

VmoeM(B@SZ)#(PJ@S])

they mask each other, and the DoM converge to 0. When a
pair (i, j) of state bits is positively correlated in the Hamming
distance, their combined Hamming distance is aether 0, or
2. Whereas if they are negatively correlated, their combined
Hamming distance is always 1, therefore we cannot distinguish
between the cases when HD on bit ¢ is 1, or 0. The issue is,
that how these bits are correlated (positively or negatively)
depends on the value of the correct key. That is, obviously,
unknown. So we have to be able to detect these negatively
correlated state bits during the attack.

Understanding the cause of this behavior will require a com-
prehensive analysis of the SipRound function and structure,
which is beyond the scope of this paper. However, because it
is key dependent, it is another possible leakage of information
about the secret key.

Fixing the Full State Model: We solve this by performing
a Welch’s t-test [9] on a randomly selected key from K after
each iteration. We put null hypothesis Hj, that the means of
the two partitions made in DPA attack have equal means. If we
do not reject the null hypothesis, the DoM is not statistically
significant, and we scrape the results of given iteration and
continue with next bit without any update. Figure 7 shows the
t-statistic for the correct key. The structure is perfectly aligned
with the DoM structure. The DoM could be entirely replaced
by the Welch’s t-test, however, it is more computationally
extensive than DoM, so we do it only once at the end of
each iteration.

128.0+ L e P Y T ¥ P T W Y N

63.0 NPt Nt ot PP ot NN pP b0 PANPy

t-statistic

0+ Puttetnn & ot tteimm wwse Sterme wmOWact stam & oo

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
state bits

Fig. 7. Correct t-statistic per bit ¢

Figure 8 plots the progress of the attack algorithm. The
maximum size of K reaches 2287 in iteration 31 and does
not go below 226 until iteration 50. The total number of key
hypotheses that the attack must go through is 2317, The size
of M (number of modeled traces) used was 8.000, and the
critical value of the t-test was set to 5.

128
112+

Y ©
=SS
=

number of key bits
=
C‘L‘ =

—
c oK

.........................

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Attack iterations

Fig. 8. Iterative Attack Progress — Full State Model

Like this, we were able to successfully retrieve the correct
SipHash key solely from the Hamming distance between the
initial state after key initialization P and the result S of
the very first SipRound. We used a single-bit DPA attack
performed in iterations, gradually increasing the number of
key bits used for the attack, while keeping the total number
of key hypothesizes and modeled traces in a feasible range.

IV. PRELIMINARY RESULTS ON A REAL DEVICE

Before replacing the modeled power consumption with
the real measurements, we first look at the structure of the
t-statistic for each state bit, the same way as in Figures 7.
Single power trace of the computation is shown in Figure 9.

02 46 810121416 18 20 22 24120 28 30 32 34 36 38 40 42 44 46 48

samples

Fig. 9. Single Power Trace

We clearly see the initialization at sample 10, and the
first state update at sample 18. Figure 10 shows the absolute
correlations of our model and the real measurements at each
sample. The number of traces used was 1.000.000.

Correlation

0 2 4 6 810121416 18 20 22 24 26 28 30 32 31 36 38 40 42 44 46 48

Samples

Fig. 10. Model vs. Real Measurement Correlation

The results show a high correlation at sample 18, reaching
0.66. To avoid ghost peaks, and to speed-up the initial evalu-
ation, we focus on the sample 18. The ¢-statistics are shown
in Figure 11. We would expect to see similar separation as in
Figure 7, but unfortunately, that is not the case.

Good Bits

Bad Bits

40

Soett
oo -

t-statistic
o
o
.

c W el
I AR
B .-..*.'-‘..

96 112 128 144 160 176 192 208 224 240 256

state bits

0 16 32 48 64 80

Fig. 11. Correct t-statistic per bit 7 for real measurements

So we increase the critical value for the t-test to ensure
that all “bad bits” are correctly detected, at the cost of false
identification of a good bit as a bad one. The progress of the
attack, using 100.000 traces is shown in Figure 12.

[K]
Bad Bit Identified

number of key bits

012345678 91011121314151617 1819 20 21 22 23 24 25 26

Attack iterations

Fig. 12. Progress of the attack on real device

We have stopped the attack at iteration 27, when the size of
K reached 23137 At this point, the 27th iteration would take
40 hours, and if not successful, the 28th would take 161 hours.
So clearly, there are still some adjustments and improvements
needed in order to make the attack feasible on real device.

The size of K at the end of the last successful iteration
(20th) was 220 with |I| = 255, So 23 keys were eliminated
with a total of 227 key hypotheses needed.

V. FUTURE WORK

The presented attack is at this moment successful only
on modeled power consumption. Preliminary results on real
device show a potential for the attack to succeed, but a clear
identification of the “bad bits” becomes problematic with the
real measurements, and will require further research.

The next step is to improve the quality of the power mea-
surement, and investigate more sophisticated attack methods
like Mutual Information and introduce a multi-bit leakage
function. Also, as the structure of the “bad bits” is key
dependent, it also leak some information. Therefore, we should
analyze what key bits make particular bits “bad” and how these
key bits must look like in such a case. We could then use this
knowledge to eliminate some keys even if the target bit is
“bad”.

VI. CONCLUSION

In this paper, we demonstrate a practical side-channel attack
targeting an FPGA implementation of SipHash. Starting with
a simplified model, we gradually build up the complexity of
the attack by introducing more realistic leakage models. By
analyzing the SipRound function, we found a weakness in the
state bits starting from bit 7 = 160. We then used this weakness
to gradually enlarge the number of key bits used for the DPA
attack in iterations, without ever exceeding the feasible amount
of key hypothesizes the attack has to iterate through. Along
the way, we refined our strategy to handle challenges such as
incorrect keys leading to the same results as the correct one,
or the presence of “bad bits”.

The computational complexity is not negligible, but still in
feasible range. The number of traces needed to successfully
retrieve the secret key is about 10 times higher than the attack
on software implementation in [7] needs, as well as the total
number of key hypotheses. However, comparison of attack
on software vs. hardware implementation is tricky, because
of the nature of the SipRound computation (CPU vs. one-
cycle combo-logic). Since there is no attempt to attack FPGA
implementation of SipHash known to us at the time of writing,
comparison with [7] is all we can do for now.

Although the presented attack is at this moment successful
only on modeled power consumption, it demonstrates that even
ARX-based designs like SipHash are not inherently immune
to side-channel attacks. The results highlight the importance
of thorough leakage assessment and careful implementation
practices, even for algorithms that are often assumed to be
inherently resistant.

ACKNOWLEDGMENT

This work was supported by the Czech Technical University
(CTU) grant No. SGS23/208/0OHK3/3T/18, by the Student
Summer Research Program 2024 of FIT CTU in Prague, and
the grant VJ02010010 of the Ministry of the Interior of the
Czech Republic, “Tools for Al-enhanced Security Verification
of Cryptographic Devices” in the program Impaktl (2022-
2025).

REFERENCES

[1] Paul C. Kocher. “Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other Systems”. In:
Advances in Cryptology — CRYPTO ’96. Ed. by Neal
Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104-113.

(2]

[4]

[7]

(8]

Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differ-
ential Power Analysis”. In: Advances in Cryptology —
CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1999, pp. 388-397.
Karine Gandolfi, Christophe Mourtel, and Francis
Olivier. “Electromagnetic Analysis: Concrete Results”.
In: Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems.
CHES °01. Berlin, Heidelberg: Springer-Verlag, 2001,
pp- 251-261. 1SBN: 3540425217.

Jean-Philippe Aumasson and Daniel J Bernstein.
“SipHash: a fast short-input PRF”. In: (2012), pp. 489—
508.

Alex Biryukov, Daniel Dinu, and Johann Grofschidl.
“Correlation Power Analysis of Lightweight Block Ci-
phers: From Theory to Practice”. In: Applied Cryptogra-
phy and Network Security. Ed. by Mark Manulis, Ahmad-
Reza Sadeghi, and Steve Schneider. Cham: Springer
International Publishing, 2016, pp. 537-557. 1SBN: 978-
3-319-39555-5.

Yan Yan and Elisabeth Oswald. “Examining the practical
side channel resilience of ARX-boxes”. In: Proceedings
of the 16th ACM International Conference on Com-
puting Frontiers. CF ’19. Alghero, Italy: Association
for Computing Machinery, 2019, pp. 373-379. 1SBN:
9781450366854. poI: 10.1145/3310273.3323399. URL:
https://doi.org/10.1145/3310273.3323399.

Matds§ Oleksdk and Vojtéch Miskovsky. “Correlation
power analysis of SipHash”. In: 2022 25th International
Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS). IEEE. 2022, pp. 84-87.
Yan Yan and Elisabeth Oswald. “Examining the practical
side channel resilience of arx-boxes”. In: Proceedings of
the 16th ACM International Conference on Computing
Frontiers. 2019, pp. 373-379.

Tobias Schneider and Amir Moradi. “Leakage assess-
ment methodology: A clear roadmap for side-channel
evaluations”. In: Cryptographic Hardware and Embed-
ded Systems—CHES 2015: 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings
17. Springer. 2015, pp. 495-513.

